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• General notions on Argumentation


• Four-state labelling


• Concurrent Argumentation Language  (CA)


‣ syntax + operational semantics


• Expansion, contraction and revision

Overview
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Extension-based Semantics for AFs1

1Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person 
games. Artificial Intelligence, 77(2):321–357.

Conflict-Free
{a}, {c}, {a,d}, …

Admissible
{a}, {a, d}, {a, b, d}, …

Complete
{a, b}, {a, b, d}, …
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▸ Two approaches to check the acceptance status:


• (Credulous) Is argument a accepted in some extension?


• (Skeptical) Is argument a accepted in all extensions?

Credulous/Skeptical Acceptability

Complete: {{a, b}, {a, b, d}, {a, b, e}}
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IN if it is attacked only by OUT arguments

OUT if it is attacked by at least an IN argument

UNDEC otherwise

Reinstatement Labelling2

2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
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• Introduces don’t know and don’t care labels


• Each argument has a label 


• Identifies extensions of the various semantics

l ⊆ {in, out}

Four-State Labelling3

3Hadassa Jakobovits and Dirk Vermeir. Robust Semantics for Argumentation Frameworks. J. Log. Comput. 9(2): 215-261 (1999)

IN,OUTIN∅ OUT OUT
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Labelling-Based Semantics

a is IN ⇒ a is not attacked by any IN

a is OUT ⇒ a is attacked by some INCF
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Labelling-Based Semantics

a is IN ⇒ a is only attacked by OUT

a is OUT ⇒ a is attacked by some INADM
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Labelling-Based Semantics

a is IN  a is only attacked by OUT

a is OUT  a is attacked by some IN

⟺
⟺COM
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Labelling-Based Semantics

 is a complete labelling

 is minimal w.r.t. set inclusion

L
L

GDE
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• These operations can be 
implemented in our language

• expansion: increases the 
number of labels


• contraction: decreases the 
number of labels


• revision: changes a label from 
in to out (and vice versa)

Connections with the AGM Framework
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A ::= success

∣ insert(Arg, R) → A

∣ rmv(Arg, R) → A

∣ A∥A

∣ ∃x A

∣ E

Concurrent Argumentation Language  (CA)
















E ::= testc(a, l, σ) → A

∣ tests(a, l, σ) → A

∣ check(Arg, R) → A

∣ E + E

∣ E +P E

∣ E∥GE

Syntax
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Concurrent Argumentation Language  (CA)

insert({b}, {(b, c)})

Operational Semantics: insertion
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Concurrent Argumentation Language  (CA)

rmv({b})  is also removed(b, c)

Operational Semantics: removal
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Concurrent Argumentation Language  (CA)

check({a}, {(a, c)})

Operational Semantics: check
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Concurrent Argumentation Language  (CA)

testc({a}, IN, complete)

Operational Semantics: c/s test
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Concurrent Argumentation Language  (CA)
Operational Semantics: constructs



AI^3 2020 - A Concurrent Language for Argumentation

• These operations can be 
implemented in our language

• expansion: increases the 
number of labels


• contraction: decreases the 
number of labels


• revision: changes a label from 
in to out (and vice versa)

Connections with the AGM Framework
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Example of Expansion Operator



AI^3 2020 - A Concurrent Language for Argumentation

Example of Expansion Operator

Expanding b from ∅ to out:


• if there exists an in argument a, let a attack b
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Example of Contraction Operator
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Example of Contraction Operator

Contracting d from undec to in:


• remove all attacks from undec arguments towards d



AI^3 2020 - A Concurrent Language for Argumentation

Example of Revision Operator
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Example of Revision Operator

Revising b from in to out:


• if there exists an in argument a, let a attack b


• and let a attack all arguments attacked by b
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• Mapping between four-state labelling and classical semantics


• Definition of a concurrent language for argumentation


‣ syntax + operational semantics


• Expansion, contraction and revision operators for AFs

Conclusion

• Introduced the semantics of failure to ensure termination


• Provided a working implementation of the language
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• Consider structured AFs instead of abstract


• Handle processes involving time-critical aspects


• Introduce a notion of “ownership” for arguments


‣ Local store for agents

Future Work
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