
DIP2020

A Concurrent Language
for Argumentation:
Preliminary Notes

Stefano Bistarelli and Carlo Taticchi

AI^3 2020 - A Concurrent Language for Argumentation

• General notions on Argumentation

• Four-state labelling

• Concurrent Argumentation Language (CA)

‣ syntax + operational semantics

• Expansion, contraction and revision

Overview

AI^3 2020 - A Concurrent Language for Argumentation

Extension-based Semantics for AFs1

1Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person
games. Artificial Intelligence, 77(2):321–357.

Conflict-Free
{a}, {c}, {a,d}, …

Admissible
{a}, {a, d}, {a, b, d}, …

Complete
{a, b}, {a, b, d}, …

AI^3 2020 - A Concurrent Language for Argumentation

▸ Two approaches to check the acceptance status:

• (Credulous) Is argument a accepted in some extension?

• (Skeptical) Is argument a accepted in all extensions?

Credulous/Skeptical Acceptability

Complete: {{a, b}, {a, b, d}, {a, b, e}}

AI^3 2020 - A Concurrent Language for Argumentation

IN if it is attacked only by OUT arguments

OUT if it is attacked by at least an IN argument

UNDEC otherwise

Reinstatement Labelling2

2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.

AI^3 2020 - A Concurrent Language for Argumentation

• Introduces don’t know and don’t care labels

• Each argument has a label

• Identifies extensions of the various semantics

l ⊆ {in, out}

Four-State Labelling3

3Hadassa Jakobovits and Dirk Vermeir. Robust Semantics for Argumentation Frameworks. J. Log. Comput. 9(2): 215-261 (1999)

IN,OUTIN∅ OUT OUT

AI^3 2020 - A Concurrent Language for Argumentation

Labelling-Based Semantics

a is IN ⇒ a is not attacked by any IN

a is OUT ⇒ a is attacked by some INCF

AI^3 2020 - A Concurrent Language for Argumentation

Labelling-Based Semantics

a is IN ⇒ a is only attacked by OUT

a is OUT ⇒ a is attacked by some INADM

AI^3 2020 - A Concurrent Language for Argumentation

Labelling-Based Semantics

a is IN a is only attacked by OUT

a is OUT a is attacked by some IN

⟺
⟺COM

AI^3 2020 - A Concurrent Language for Argumentation

Labelling-Based Semantics

 is a complete labelling

 is minimal w.r.t. set inclusion

L
L

GDE

AI^3 2020 - A Concurrent Language for Argumentation

• These operations can be
implemented in our language

• expansion: increases the
number of labels

• contraction: decreases the
number of labels

• revision: changes a label from
in to out (and vice versa)

Connections with the AGM Framework

AI^3 2020 - A Concurrent Language for Argumentation

A ::= success

∣ insert(Arg, R) → A

∣ rmv(Arg, R) → A

∣ A∥A

∣ ∃x A

∣ E

Concurrent Argumentation Language (CA)

E ::= testc(a, l, σ) → A

∣ tests(a, l, σ) → A

∣ check(Arg, R) → A

∣ E + E

∣ E +P E

∣ E∥GE

Syntax

AI^3 2020 - A Concurrent Language for Argumentation

Concurrent Argumentation Language (CA)

insert({b}, {(b, c)})

Operational Semantics: insertion

AI^3 2020 - A Concurrent Language for Argumentation

Concurrent Argumentation Language (CA)

rmv({b}) is also removed(b, c)

Operational Semantics: removal

AI^3 2020 - A Concurrent Language for Argumentation

Concurrent Argumentation Language (CA)

check({a}, {(a, c)})

Operational Semantics: check

AI^3 2020 - A Concurrent Language for Argumentation

Concurrent Argumentation Language (CA)

testc({a}, IN, complete)

Operational Semantics: c/s test

AI^3 2020 - A Concurrent Language for Argumentation

Concurrent Argumentation Language (CA)
Operational Semantics: constructs

AI^3 2020 - A Concurrent Language for Argumentation

• These operations can be
implemented in our language

• expansion: increases the
number of labels

• contraction: decreases the
number of labels

• revision: changes a label from
in to out (and vice versa)

Connections with the AGM Framework

AI^3 2020 - A Concurrent Language for Argumentation

Example of Expansion Operator

AI^3 2020 - A Concurrent Language for Argumentation

Example of Expansion Operator

Expanding b from ∅ to out:

• if there exists an in argument a, let a attack b

AI^3 2020 - A Concurrent Language for Argumentation

Example of Contraction Operator

AI^3 2020 - A Concurrent Language for Argumentation

Example of Contraction Operator

Contracting d from undec to in:

• remove all attacks from undec arguments towards d

AI^3 2020 - A Concurrent Language for Argumentation

Example of Revision Operator

AI^3 2020 - A Concurrent Language for Argumentation

Example of Revision Operator

Revising b from in to out:

• if there exists an in argument a, let a attack b

• and let a attack all arguments attacked by b

AI^3 2020 - A Concurrent Language for Argumentation

• Mapping between four-state labelling and classical semantics

• Definition of a concurrent language for argumentation

‣ syntax + operational semantics

• Expansion, contraction and revision operators for AFs

Conclusion

• Introduced the semantics of failure to ensure termination

• Provided a working implementation of the language

AI^3 2020 - A Concurrent Language for Argumentation

• Consider structured AFs instead of abstract

• Handle processes involving time-critical aspects

• Introduce a notion of “ownership” for arguments

‣ Local store for agents

Future Work

DIP2020

A Concurrent Language
for Argumentation:
Preliminary Notes

Stefano Bistarelli and Carlo Taticchi

Thanks for your attention!

