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[Collberg et al. POPL 1998] 
A program transformation O: Programs        Programs  is a code obfuscation if: 
‣ O preserves the observational behavior of programs 
‣ O(P) is more difficult to analyse
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What does it mean to complicate/confuse 

dynamic analysis?

Code Obfuscation & Dynamic Analysis



Analyze a finte subset  of finte 
program traces to infer informations 
of the whole program, like in program 
testing and fuzzing
➡ Increase false negatives?

➡ Soundness can be forced or harmed by transforming the 

analysis or the program?

Dynamic Analysis

Analyze a single trace to better 
understand what went wrong or for 
runtime monitoring/verification Error

➡ Insert useless computations



Add diversification for  
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Property of single trace (no properties of sets of traces) 

Equivalence Relation

Traces

Formalizing Dynamic Analysis
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Formalizing Dynamic Analysis

Equivalence Relation
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Obfuscating Dynamic Analysis
The key for harming dynamic analysis is diversification 

wrt the property being analysed

Colours represents the equivalence classes wrt             A
Ideally: specialise the program for every input wrt          A
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Obfuscating Dynamic Analysis
The key for harming dynamic analysis is diversification 

wrt the property being analysed
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Data Obfuscation
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Data Obfuscation

No effects on
dynamic analysis

Let us denote with R 2 eq(⌃⇤) the equivalence relation modelling the code cov-
erage metric used either by fuzzing or symbolic execution or any other algorithm for
input generation. When Exe(P, TP, t) covers P wrt R, we have that the fuzzer or sym-
bolic execution algorithm has found all the inputs that allow us to observe the different
behaviours of P wrt R. In general, a dynamic analysis may be interested in a property
RA 2 eq(⌃⇤) that is different from the property R used to measure code coverage.
When R v RA we have that if Exe(P, TP, t) covers P wrt R, then Exe(P, TP, t) covers
P also wrt RA and this means that the code coverage metric R can help in limiting the
number of false negative of the dynamic analysis hRA, Exe(P, TP, t)i. When R 6v RA

then a different metric for code coverage should be used (for example RA itself).

4.3 Harming Dynamic Data Analysis

Data obfuscation transformations change the representation of data with the aim of hid-
ing both variable content and usage. Usually, data obfuscation requires the program
code to be modified, so that the original data representation can be reconstructed at run-
time. Data obfuscation is often achieved through data encoding [5, 28]. More specifi-
cally, in [15, 23] data encoding for a variable x is formalised as a pair of statements:
encoding statement Cenc = x := f(x) and decoding statement Cdec = x := g(x)
for some function f and g, such that Cdec;Cenc = skip. According to [15, 23] a pro-
gram transformation T(P)

def
= Cdec; tx(P);Cenc is a data obfuscation for x where tx ad-

justs the computations involving x in order to preserve program’s functionality, namely
Den[[P]] = Den[[Cdec; tx(P);Cenc]]. In Fig. 5 we provide a simple example of data
obfuscation from [15, 23] where Cenc = x := 2 ⇤ x and Cdec = x := x/2 and
T(P) = x := x/2; tx(P); x := 2 ⇤x and program P is the one considered in Example. 2.
This data transformation induces imprecision in the static analysis of the possible val-

P
input x;
sum := 0;
while x < 50
• X = [x, 49]

sum := sum + x;
x := x + 1;

T(P)
input x;
x := 2*x;
sum := 0;
while x < 2*50
• X = [x, 2 ⇤ 50 - 1]

sum := sum + x/2;
x := x + 2;

x:= x/2;

Tn(P)
input x;
x := n*x;
sum := 0;
while x < n*50
• X = [x,n ⇤ 50 - 1]

sum := sum + x/n;
x := x + n;

x:= x/n;

TH(P)
input x;
n := select(N,x);
x := He(n,x);
sum := He(n,0);
while x <H He(n,50)
• X = [x,He(n, 50)- 1]

sum := sum +H x;
x := x +H He(n,1);

x:= Hd(x);

Fig. 5: From the left: programs P, T(P), Tn(P) and TH(P)

ues assumed by x at program point •. Indeed, the static analysis of the interval of values
of x at program point • in T(P) is different and wider (it contains spurious values)
than the interval of possible values of x at • in P. However, the dynamic analysis of
properties on the values assumed by x during execution at the different program points
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Dynamic CFG Obfuscation

input(x)
if x is even:

x = x/2
else:
x = x+1
x = x/2

print(x)

input x;
if x is even:

switch(x mod 4): else:
switch(x mod 4):

case 2:
x = x+2
x = x/2
x = x-1

case 0:
x = x/2

case 1:
x = x+1
x = x/2

case 3:
x = x+3
x = x/2
x = x-1

print(x)

Branch()

input(x)

x = x+1
x = x/2

print(x)

x = x/2

x = x+3
x = x/2
x = x-1

x = x+2
x = x/2
x = x-1
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P RD(P) GD(P)

Fig. 4: CFG of P, RD(P) and GD(P)

A simple example is provided in Fig. 4 where on the left we have the CFG of the
original program P. P verifies the parity of the input value and then computes the integer
division. The second graph in Fig. 4 represents the CFG of program P transformed by
RD. The CFG of program RD(P) has four different paths depending on the value of the
input variable x. Each one of these paths is functionally equivalent to the corresponding
path in P (case 0 and case 2 are equivalent to the path taken when x is even, while
case 1 and case 3 are equivalent to the path taken when x is odd). We can easily
observe that in this case the paths of RD(P) have been diversified wrt the paths of P.
Indeed, a dynamic analysis has to observe two execution traces to precisely build the
CFG for P, while four traces are need to precisely build the CFG of RD(P).

Gadget Diversification: In [27] the authors propose a program transformation, denoted
GD : Prog ! Prog that hinders the dynamic CFG analysis. GD starts by identifying
a sequence Qseq of sequential command (no branches) in program P. Next, GD as-
sumes to have access to a set of diversifying transformations Ti : Prog ! Prog with
i 2 [1,n] that diversify command sequences while preserving their functionality. These
transformations are then applied to portions of Qseq in order to generate a wide set
Sseq = {Q1..Qm} of command sequences where each Qj 2 Sseq is functionally equiva-
lent to Qseq, while every pair Qj,Ql 2 Sseq are such that RCFG([[Qj]]) 6= RCFG([[Ql]]).
This means that each execution trace generated by the run of a sequence in Sseq belongs
to a different equivalence class wrt relation RCFG, while being denotationally equivalent
by definition.

Transformation GD proceeds by adding a branching function to the original
program P that, depending on the input values, deviates the control flow to one of the
sequences of commands in Sseq. Thus, depending on the input values, GD diversifies
the path that is executed. This makes the transformation GD potent wrt RCFG according
to the proposed framework.

A simple example of GD can be observed in the third graph of Fig. 4, where the
original program is transformed to reveal a peculiar CFG structure. The branch func-
tion is here symbolized as the central block from which all other blocks are called and

Diversification

Range Dividers 2016 Gadget diversification 2011



Open Issues

➡ Properties of set of traces, other properties? Topological 
characterisation wrt to the kind of property being analysed 


➡Model validation (ORAM, fuzzers, input generator and 
recognisers,…)


➡Potentiality and limits of code obfuscation for dynamic 
analysis


➡ Extend the model with measure of likelihodd of the inputs 
(probability distribution over the input)
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