The Standard Model for Programming Languages:
The Birth of a Mathematical Theory of Computation

Simone Martini

Universita di Bologna and INRIA Sophia-Antipolis

Bologna, 27 November 2020

Happy birthday, Maurizio!

1/58

This workshop:
Recent Developments of the Design and Implementation of
Programming Languages

/58

This workshop:

Recent Developments of the Design and Implementation of
Programming Languages

Well, not so recent: we go back exactly 60 years!

It's more a revisionist’s tale. ..

/58

Is-Alan Turing the father of computer
| e s | science?

4/58

Is-Alan Turing the father of computer
science?

OSOPHY OF LOGIC, 2015 0
> Taylor & Francis
28, hitp://dx.doi.org/10.1080/01445340.2015.1082050 @ L phcbiuint

s a Historical Notion of ‘Turing—the
Father of Computer Science’

5/58

Is-Alan Turing the father of computer
science?

s a Historical Notion of ‘Turing—the
Father of Computer Science’

6/58

Is-Alan Turing the father of computer
science?

Taylor & Francis
T G

Is-Alan Turing the father of computer

jviewpomts science?

the Com

Separating thé\ @m: oot
&Q

ds a Historical Notion of ¢ ing—the
ather of Computer Scief¥e’ Ly
u,
0,
O,})
s

Is-Alan Turing the father of computer
science?

Turing Oversold

Jirgen Schmidhuber (November 2020)
Pronounce: You_again Shmidhoobuh

/58

Is-Alan Turing the father of computer

science?
> @
(}“@ &>
@ <
L P
& 2°
&P
&> Turing Oversold
> &
d‘\o (‘$ Jurgen Schmidhuber (November 2020)
40*\@0 Pronounce: You_again Shmidhoobuh
SR
R
PP
e
P
P
& 9
@
N o
» &
)
P
e

10/58

H. Bergson

the retrospective illusion of truth
I'illusion rétrospective du vrai

Par le seul fait de s'accomplir, la réalité projette
derriere elle son ombre dans le passé
indéfiniment lointain ; elle paralt ainsi avoir
préexisté, sous forme de possible, a sa propre
réalisation

[H. Bergson, La pensée et le mouvant, 1934]

also: le mouvement rétrospectif/rétrograde du vrai
v

11/58

Turing the father of CS?

o Little influence on actual computers
EDVAC, and not Turing's ACE is the ancestor of Manchester Mark |

@ The mathematical theory of computation
is the result of an agenda of the late 50s

@ Of course someone knew. ..
von Neumann, Goldstine, Curry, Bernays, Gorn, ...

12 /58

Goldstine and von Neumann

[..] coding [...] has to be viewed as a logical problem and one
that represents a new branch of formal logics.

Hermann Goldstine and John von Neumann

Planning and Coding of problems for an Electronic Computing Instrument

Report on the mathematical and logical aspects of an electronic computing instrument,
Part I, Volume 1-3, April 1947. Institute of Advanced Studies.

14 /58

Boxes in flow diagrams

Goldstine and von Neumann, 2

Boxes in flow diagrams
@ operation boxes
@ substitution boxes

@ assertion boxes

The contents of an assertion box are one or more relations.

An assertion box [...] indicates only that certain relations are
automatically fulfilled whenever [the control reaches that point]

Free and bound variables, etc.

16/58

& S 7\ N Turing

~—— Lecture on Automatic Computing Engine]

x4+ +

London Mathematical SOC., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32

/ High-level languages

]

%“m =AY

Turing

Lecture on Automatic Computing Engine

London Mathematical Soc., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32
v

High-level languages
In principle one should be able to communicate [with these machines] in
any symbolic logic [...].

This would mean that there will be much more practical scope for logical
systems than there has been in the past.

18/58

Turing, again: 1949

The programmer should make assertions about the various states
that the machine can reach.

The checker has to verify that [these assertions| agree with the
claims that are made for the routine as a whole.

Finally the checker has to verify that the process comes to an end.

A.M. Turing. Checking a large routine. Paper read on 24 June 1949 at the inaugural conference of the EDSAC

computer at the Mathematical Laboratory, Cambridge.
Discussed by Morris and Jones, Annals of the History of Computing, Vol. 6, Apr. 1984.

19/58

Corrado Bohm

Born, 1923
Died, 2017
' 1946: Dipl Engineering, Lausanne

1947: At ETH, Zirich

sent to Zuse's lab to evaluate the Z4

" 4 1953: Researcher at IAC, Rome
1954: PhD, ETH Ziirich (Stiefel, Bernays)
1970: Professor, Turin
1974: Professor, Rome La Sapienza

20/58

Bohm:
Universal machines

CQalculatrices digitales.
Du déchiffrage de formules logico-mathématiques par la
machine méme dans la conception du programme.

Mémoire de Corrapo BSHM (2 Roma) (*).

Nous voulons admettre — ce qui est assez plausible — que les calcu-
latrices les plus évoluées sont universelles, au sens spécifié par M. TURING.

(*) Ricercatore a I Istituto Naz. per le Applicazioni del Caleolo. These présentée a
I"Ecole Polytechnique Fédérale, Zurich, pour I'obtention du grade dé Docteur &s Sciences
mathématiques. Rapporteur: Prof. Dr. E. Stiefel; corapporteur: Prof. Dr. P. Bernays (1952).

21/58

However,

Programming in the fifties (and later...) was a different story. . . J

g
o
o

sl Bl
mHS

9010

Knuth's recollection, circa 1962

23/58

Knuth's recollection, circa 1962

| had never heard of “computer science”

The accepted methodology for program
construction was [.. .]: People would write
code and make test runs, then find bugs
and make patches, then find more bugs and
make more patches, and so on.

We never realized that there might be a
way to construct a rigorous proof of validity
[...] even though | was doing nothing but
proofs when | was in a classroom

[D.K. Knuth, Robert W. Floyd, in memoriam. ACM SIGACT News 2003]
b

24/58

Knuth's recollection, circa 1962

The early treatises of Goldstine and von
Neumann, which provided a glimpse of
mathematical program development, had
long been forgotten.

25 /58

Donald E. Knuth

Born, 1938

Bachelor and Master of science:
Physics, Mathematics, 1960

PhD Mathematics, 1963

Stanford University, since 1968

The Art of Computer Programming: 1968 - today

Turing Award, 1974 (he was 36...)

26 /58

Donald E. Knuth

Born, 1938
Bachelor and Master of science:
Physics, Mathematics, 1960
PhD Mathematics, 1963
Stanford University, since 1968
The Art of Computer Programming: 1968 - today
Turing Award, 1974 (he was 36...)

Sorry Mau:
when you'll get the Turing Award, you'll be at least 60. . . }

27 /58

A Mathematical Theory of Computation

28 /58

A Mathematical Theory of Computation

It is reasonable to hope that the
relationship between computation and
mathematical logic will be as fruitful in the
next century as that between analysis and
physics in the last.

John McCarthy, MIT 1961; Stanford 1963

From the conclusion of the final version of the paper (1963): A Basis for a
Mathematical Theory of Computation. 1961: the Western Joint Computer
Conference; 1962: IBM symposium in Blaricum, Netherlands; 1963: in
Computer Programming and Formal Systems, North Holland.

29 /58

John McCarthy

Born, 1927
Died, 2011

| Bachelor of science: Mathematics, 1942
PhD Mathematics, 1951

MIT, 1956-1962

Stanford University, since 1968

Turing Award, 1971

Artificial intelligence
Lisp

30/58

A basis for a Mathematical Theory of Computation
Expected practical results:

@ To develop a universal programming language

@ To define a theory of the equivalence of computation processes
© To represent algorithms by symbolic expressions |...]
(%)

To represent computers as well as computations in a
formalism that permits a treatment of the relation between a
computation and the computer that carries out the
computation

© To give a quantitative theory of computation.

31/58

We hope that the reader will not be angry about the contrast
between the great expectations of a mathematical theory of
computation and the meager results presented in this paper.

32 /58

(]

Contents

a class of recursively computable functions
based on arbitrary domains of data and operations on them

with conditional expressions

functionals
a general theory of datatypes

recursion induction to prove equivalences

33 /58

Program correctness

© To define programming languages
At present, programming languages are constructed in a very
unsystematic way. [...] A better understanding of the
structure of computations and of data spaces will make it
! easier to see what features are really desirable.
o/ ©Q To eliminate debugging.
Instead of debugging a program, one should prove that it
meets its specifications, and this proof should be checked by a
computer program. For this to be possible, formal systems are
required in which it is easy to write proofs.

/<)

34/58

Program correctness

Towards a Mathematical Science of Computation, IFIP 1962

© To define programming languages
At present, programming languages are constructed in a very
unsystematic way. [...] A better understanding of the
structure of computations and of data spaces will make it
easier to see what features are really desirable.

@ To eliminate debugging.
Instead of debugging a program, one should prove that it
meets its specifications, and this proof should be checked by a
computer program. For this to be possible, formal systems are
required in which it is easy to write proofs.

35/58

Contents

@ Recursion induction to prove properties of Algol programs:
a program is understood as a representative for its meaning:
argue on the program for obtaining results on its model

@ Abstract syntax of programming languages

© Semantics: the meaning of program is defined by its effect on
the state vector.)

36 /58

R. Floyd

37/58

R. Floyd

An adequate basis for formal definitions of
the meanings of programs [...] in such a
way that a rigorous standard is established
for proofs about computer programs

Based on ideas of Perlis and Gorn

That semantics of a programming language
may be defined independently of all
processors [.. .| appear[s] to be new,

although McCarthy has done similar work
for programming languages based on
evaluation of recursive functions.

Robert W. Floyd. Assigning meaning to programs. Mathematical Aspects
of Computer Science, AMS 1967.

v

38/58

Robert W. Floyd

Born, 1936
Died, 2001

Bachelor in liberal arts: 1953 (he was 17)
Bachelor in physics: 1958

No PhD

Computer programmer

Carnegie Mellon University, 1965-1968
Stanford University, since 1968

Turing Award, 1978

Grammars
Programming language semantics

39/58

Our giant founding fathers:

Alan Turing

John von Neumann
Corrado Bohm

John McCarthy

Bob Floyd

Tony Hoare

Peter Landin
Christopher Strachey

® 6 6 6 66 o o o

and the many many others...

40 /58

Our giant founding fathers:

Alan Turing

John von Neumann
Corrado Bohm

John McCarthy

Bob Floyd

Tony Hoare

Peter Landin
Christopher Strachey

and the many many others...

There is a common theme in their (very different!) approaches. . . J

41/58

The standard model

True arithmetic and (in principle) unbounded resources J

j

e al2\ M\

Proof methods applied directly to programs without first
= transforming them into their semantic equivalent [McCarthy 1962]

S .

The standard model

True arithmetic and (in principle) unbounded resources J

Proof methods applied directly to programs without first
transforming them into their semantic equivalent [McCarthy 1962] J

43/58

Three features:
@ compositionality
@ extensionality

o referential transparency

The standard model

44 /58

C.A.R. Hoare

Computer programming is an exact science in that all the
properties of a program and all the consequences of executing it in
any given environment can, in principle, be found out from the text
of the program itself by means of purely deductive reasoning.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM 12(10), 1969.

45 /58

Charles Anthony R. (Tony) Hoare

Born, 1934

Classics and philosophy: 1956
Statistics, Computer programmer: 1956-1968

Queen’s University of Belfast, 1968-1977
Oxford University, since 1977

Turing Award, 1980

FRS

Algorithms (QuickSort), concurrency
Definition and design of programming languages

46 /58

amming t science. .. J

<
%
3
< %in,
m | 'AN®] .2\ 1oAY
omputer progr is an exac
-
" :F & g O
s8] A . /
(3 ﬁ L @
o] © oe,
AV, V=,
=] |5 C
A < §
- A
A
47/58

Resistances

Most scientists thought that using a computer was simply
programming — that it didn’t involve any deep scientific thought
and that anyone could learn to program. So why have a degree?

They thought computers were vocational vs. scientific in nature.
[Conte, Computerworld magazines, 1999]

48 /58

Computer Science Dpts

1962 Purdue University (West Lafayette, IN): first dpt of CS;
Samuel D. Conte (Perlis: 1951-1956@computation center)

1965 Stanford University (Palo Alto, CA); George Forsythe
(Herriot, McCarthy, Feigenbaum, Wirth, Knuth(later))
Since 1961 it was a “division” of Math Dpt.

1965 Carnegie Mellon University (Pittsburg, PA); Alan J. Perlis
(Allen, Simon)

1965 First PhD given by a CS Dpt: Richard Wexelblat @ University
of Pennsylvania (ENIAC!)

1971 Yale (New Haven, CT); Perlis

49 /58

0010%

))
o ope AN 7
'u @
* ofo o ® | W

The grand view

Structural engineering
@ mathematical physics laws
@ empirical knowledge

to understand, predict, and calculate the stability, strength and
rigidity of structures for buildings.

McCarthy:

the relationship between computation and mathematical logic will
be as fruitful as that between analysis and physics.

51/58

C.A.R. Hoare

When the correctness of a program, its compiler, and the hardware
of the computer have all been established with mathematical
certainty, it will be possible to place great reliance on the results of
the program, and predict their properties with a confidence limited
only by the reliability of the electronics.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM 12(10), 1969.
”

Hierarchy of machines

All levels are of the same (abstract) nature

All levels could be subject (at least conceptually) to the same
analysis.

A formally proved chain of compilers:

a proof that a model of the hight level program satisfies a
condition,

transfers to a proof that a model of the low level program
satisfies a certain condition (automatically obtained from the
other)

No concrete, iron, workmanship is involved.

53 /58

The standard model

%,
l |

True arithmetic and (in principle) unbounded resources J

I Am\ﬁ\g\\\ () \\\

The standard model is to PL
what is to mechanics

{}a'o 2 el A

The standard model

True arithmetic and (in principle) unbounded resources J

The standard model is to PL
what movement without friction is to mechanics

55 /58

The standard model

Ontological interpretation

Contrary to some mechanistic interpretation
(Piccinini, but also some Dijkstra):

@ a program denotes
@ a program talks about the world

@ a program acts on the object of the world

56 /58

The standard model

Ontological interpretation

Contrary to some mechanistic interpretation
(Piccinini, but also some Dijkstra):

@ a program denotes
@ a program talks about the world

@ a program acts on the object of the world

And then an ethical responsability. . .

57 /58

Happy birthday, Maurizio!

58 /58

