
The Standard Model for Programming Languages:

The Birth of a Mathematical Theory of Computation

Simone Martini

Università di Bologna and INRIA Sophia-Antipolis

Bologna, 27 November 2020

Happy birthday, Maurizio!

1 / 58

This workshop:
Recent Developments of the Design and Implementation of
Programming Languages

Well, not so recent: we go back exactly 60 years!

It’s more a revisionist’s tale. . .

2 / 58

This workshop:
Recent Developments of the Design and Implementation of
Programming Languages

Well, not so recent: we go back exactly 60 years!

It’s more a revisionist’s tale. . .

3 / 58

Is Alan Turing the father of computer
science?

HISTORY AND PHILOSOPHY OF LOGIC, 2015
Vol. 36, No. 3, 205–228, http://dx.doi.org/10.1080/01445340.2015.1082050

Towards a Historical Notion of ‘Turing—the
Father of Computer Science’

EDGAR G. DAYLIGHT
Utrecht University, The Netherlands

egdaylight@dijkstrascry.com

Received 14 January 2015 Accepted 3 March 2015

In the popular imagination, the relevance of Turing’s theoretical ideas to people producing actual machines was
significant and appreciated by everybody involved in computing from the moment he published his 1936 paper
‘On Computable Numbers’. Careful historians are aware that this popular conception is deeply misleading. We
know from previous work by Campbell-Kelly, Aspray, Akera, Olley, Priestley, Daylight, Mounier-Kuhn, Haigh,
and others that several computing pioneers, including Aiken, Eckert, Mauchly, and Zuse, did not depend on (let
alone were they aware of) Turing’s 1936 universal-machine concept. Furthermore, it is not clear whether any
substance in von Neumann’s celebrated 1945 ‘First Draft Report on the EDVAC’ is influenced in any identifiable
way by Turing’s work. This raises the questions: (i) When does Turing enter the field? (ii) Why did the Association
for Computing Machinery (ACM) honor Turing by associating his name to ACM’s most prestigious award, the
Turing Award? Previous authors have been rather vague about these questions, suggesting some date between
1950 and the early 1960s as the point at which Turing is retroactively integrated into the foundations of computing
and associating him in some way with the movement to develop something that people call computer science. In
this paper, based on detailed examination of hitherto overlooked primary sources, attempts are made to reconstruct
networks of scholars and ideas prevalent in the 1950s, and to identify a specific group of ACM actors interested
in theorizing about computations in computers and attracted to the idea of language as a frame in which to
understand computation. By going back to Turing’s 1936 paper and, more importantly, to re-cast versions of
Turing’s work published during the 1950s (Rosenbloom, Kleene, Markov), I identify the factors that made this
group of scholars particularly interested in Turing’s work and provided the original vector by which Turing
became to be appreciated in retrospect as the father of computer science.

1. Introduction
In August 1965, Anthony Oettinger and the rest of the Program Committee of the ACM

met and proposed that an annual ‘National Lecture be called the Allen [sic] M. Turing
Lecture’.1 The decision was also made that the ACM should have an awards program.
The ACM Awards Committee was formed in November 1965 (Association of Computing
Machinery 1966a). After having collected information on the award procedures ‘in other
professional societies’, Lewis Clapp—chairman of the ACM Awards Committee—wrote in
August 1966 that

[a]n awards program [···] would be a fitting activity for the Association as it
enhances its own image as a professional society. [···] [I]t would serve to accentuate
new software techniques and theoretical contributions. [···] The award itself might

1 See Association of Computing Machinery (1965, p. 5). The minutes of that meeting state:

Bright reported that the Program Committee recommends that the National ACM Lecture be named the Allen [sic]
M. Turing Lecture. Oettinger moved, seconded by Young that it be so named. Several council members indicated
they were not satisfied with this choice. Juncosa suggested we consider a lecture name that is not that of a person.
vanWormer moved, seconded by Juncosa to table the motion. The vote was: for − 15; opposed − 5; abstention − 2.
(Association of Computing Machinery 1965, p. 11, original emphasis)

© 2015 EDGAR G. DAYLIGHT

36
 C

OM
M

UNIC
ATIO

NS O
F T

HE A
CM

|

OCTOBER 2
014 |

 V
OL. 5

7 |
 N

O. 1
0

V
vie

wpo
int

s

PHOTOGRAPH B
Y T

HOM
AS B

ETHGE

DOI:1
0.1

14
5/

26
29

49
9

Ed
ga

r G
. D

ay
lig

ht

Viewpoin
t

A Turin
g Tale

Asse
ssi

ng th
e accura

cy of p
opular d

escrip
tio

ns

of A
lan Turin

g’s i
nfluences a

nd le
gacy.

word
s m

eant e
xactly

 th
e sam

e to
 every

histo
ric

al a
cto

r. I
n th

is Viewpoin
t, t

hey

re
fer t

o a
 la

rg
e sto

re
 in

sid
e th

e c
om

-

puter,
contain

in
g both

 num
bers and

in
stru

ctio
ns. A

ccord
in

g to
 th

e curre
nt

state of th
e art

in
 th

e histo
ry of c

om
put-

in
g, t

he w
ord

s “sto
re

d p
ro

gra
m

” w
ere

in
tro

duced in
 1

949 b
y IB

M
 e

ngin
eers

in
 Poughkeepsie, N

Y.8

Alth
ough a

ll
th

re
e T

urin
g scholars

have th
eir

own uniq
ue narra

tiv
e th

ru
st,

I w
ill

 discuss H
odges’s 1983 biogra

phy

M
UCH

H

AS
BEEN writ

ten

about
Alan Turin

g dur-

in
g th

e past d
ecades and

by a
 varie

ty
of p

eople, in
-

clu
din

g histo
ria

ns, phi-

losophers, a
nd lo

gicians. B
ecom

in
g a

Turin
g scholar t

oday n
ot o

nly
re

quire
s

archival re
search but

also th
e stu

dy

of
severa

l
secondary

sources.
Doin

g

th
e la

tte
r l

eads to
 th

e observatio
n th

at

m
any t

exts contain
 flaws.

In
 th

is Viewpoin
t,

I com
pare

 and

contra
st s

om
e key arg

um
ents put f

orth

by
th

re
e

Turin
g

scholars—
Andre

w

Hodges, M
arti

n Davis, and Ja
ck Co-

peland—
highlig

htin
g th

e conceptu
al

diff
ere

nce betw
een a “universal Tur-

in
g m

achin
e” and a “sto

re
d p

ro
gra

m
”

com
puter.

M
y findin

gs com
plem

ent

Thom
as Haigh’s Ja

nuary 2014 Com-

municatio
ns H

isto
ric

al R
eflectio

ns col-

um
n, “

Actu
ally

, T
urin

g D
id

 N
ot I

nvent

th
e C

om
puter.”

7

In
 his 1936 paper,

“On C
om

putable

Num
bers,” T

urin
g in

tro
duced h

is a
u-

to
m

atic
 m

achin
es, w

hich d
o n

ot c
on-

tain
 a fi

nite
 outp

ut (
nor a

n in
put)

as is

th
e case w

ith
 th

e la
ter-d

evised “Turin
g

m
achin

es.” T
urin

g w
anted each of h

is

m
achin

es to
 com

pute and p
rin

t a
 re

al

num
ber (

such as π
 and ¼

).
For e

xam
-

ple, t
he m

achin
e com

putin
g ¼

 p
rin

ts

th
e digits

 0 and 1 and th
en fo

re
ver

prin
ts th

e d
igit

0 in
 a

ccord
ance w

ith

¼’s bin
ary re

pre
sentatio

n: 0
.01000…

Durin
g th

e course of t
hre

e decades,

Turin
g, E

m
il P

ost,
Alonzo C

hurch, S
te-

phen K
leene, M

arti
n D

avis, S
aul G

orn
,

and o
th

ers re
cast t

he concept o
f T

ur-

in
g’s 1936 auto

m
atic

 m
achin

e. S
evera

l

ye
ars w

ere
 n

eeded fo
r t

he te
rm

 “
uni-

versal T
urin

g m
achin

e” to
 a

cquire
 a

n

in
varia

nt m
eanin

g.5
,12 M

arti
n D

avis pre
-

sented a m
odern

 definiti
on in

 his 1958

book Computa
bili

ty and Unsolvabili
ty

3

and a d
efiniti

on fo
r t

he la
ym

an in
 h

is

re
cent

book The Universal Computer:

The R
oad fr

om L
eibniz to

 T
urin

g4 —
tw

o

definiti
ons I

abid
e w

ith
 h

ere
 and w

ith

which m
odern

 te
xtb

ooks in
 com

puter

science com
ply.

The m
eanin

g atta
ched to

 th
e w

ord
s

“sto
re

d p
ro

gra
m

” also changed in
 th

e

post-w
ar y

ears and it
 is

 u
nlik

ely th
ose

V
vie

wpo
int

s

MARCH 2015 | VOL. 58 | NO. 3 | COMMUNICATIONS OF THE ACM 37

V viewpoints

IM
AG

E B
Y A

LIC
IA

 K
U

BIS
TA

/A
N

D
RIJ

 B
O

RYS A
SSO

CIA
TES

Viewpoint

Why Did Computer

Science Make a Hero

Out of Turing?

Comparing the legacy of Alan Turing in computer science

with that of Carl Friedrich Gauss in mathematics.

E VERY DISCIPLINE THAT comes

of age consecrates its own

roots in the process. In foot-

notes, anecdotes, and names

of departmental buildings,

occasions are found to remember and

celebrate personalities and ideas that

a discipline considers its own. A dis-

cipline needs heroes to help create a

narrative that legitimizes and fortifies

its own identity. Such a narrative hard-

ly reflects the complexity of histori-

cal reality. Rather, it echoes the set of

preferences and programmatic choic-

es of those in charge of a discipline at

a given moment in a given place. Each

name that gets integrated into an of-

ficialized genealogy is the result of dis-

cussions and negotiations, of politics

and propaganda.

To the general public, the genealo-

gies of physics and mathematics are

probably more familiar than that of

computer science. For physics we go

from Galileo via Newton to Einstein.

For mathematics we begin with Euclid

and progress over Descartes, Leibniz,

Euler and Gauss up to Hilbert. Com-

puter science by contrast is a relatively

young discipline. Nevertheless, it is

already building its own narrative in

which Alan Turing plays a central role.

In the past decennia, and especially

during the 2012 centenary celebration

of Turing, his life and legacy received

an increasing amount of attention.

DOI:10.1145/2658985

Maarten Bullynck, Edgar G. Daylight, and Liesbeth De Mol

V viewpoints

36 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

T
U

R
I

N
G

 P
H

O
T

O
 C

O
U

R
T

E
S

Y
 O

F
 N

A
T

I
O

N
A

L
 P

O
R

T
R

A
I

T
 G

A
L

L
E

R
Y

;
P

A
P

E
R

 I
M

A
G

E
 C

O
U

R
T

E
S

Y
 O

F
 C

H
R

I
S

T
I

E
’S

Historical Reflections
Actually, Turing
Did Not Invent
the Computer
Separating the origins of computer science and technology.

points of Turing’s actual career. In
1936, just two years after completing his
undergraduate degree, he introduced
the concept now called the Turing Ma-
chine in a paper called “On comput-
able numbers, with an application to
the Entscheidungsproblem.” This has
since become the main abstract mod-
el of computation used by computer
scientists. During the Second World
War Turing made several vital contri-
butions as part of the British team try-

THE 100 TH ANNIVERSARY of the
birth of Alan Turing was cel-
ebrated in 2012. The com-
puting community threw its
biggest ever birthday party.

Major events were organized around the
world, including conferences or festi-
vals in Princeton, Cambridge, Manches-
ter, and Israel. There was a concert in
Seattle and an opera in Finland. Dutch
and French researchers built small Tur-
ing Machines out of Lego Mindstorms
kits. Newspaper and magazine articles
by the thousands brought Turing’s life
story to the public. ACM assembled 33
winners of its A.M. Turing Award to dis-
cuss Turing’s ideas and their relation-
ship to the future of computing. Various
buildings, several roads, and at least
one bridge have been named after him.

Dozens of books with Turing’s
name in the title were published or re-
issued. Turing was so ubiquitous that
even George Dyson’s book about John
von Neumann was titled Turing’s Ca-
thedral, becoming the first book on the
history of information technology to
reach a broad audience since the one
about Nazis with punched card ma-
chines. Publishers are well aware there
is a strong audience for books about
Nazis. The public’s hunger for books
about mathematicians and computer
scientists is less acute, making Tur-
ing’s newfound commercial clout both
unlikely and heartening.

Still, as this flood of Turing-related
material begins to recede it is time to
clean up some of the rather bad smell-
ing historical claims left in our meta-
phorical basement. Column space is
short, so I will focus here on the idea
that Turing invented the computer.
Very short version: it is wrong.

In case you spent 2012 in a maxi-
mum-security prison or meditating
in a Tibetan monastery, let me briefly
summarize the computer-related high

DOI:10.1145/2542504 Thomas Haigh

Alan Turing (left); the cover page of Turing’s paper “On computable numbers, with
an application to the Entscheidungsproblem” (right).

4 / 58

Is Alan Turing the father of computer
science?

HISTORY AND PHILOSOPHY OF LOGIC, 2015
Vol. 36, No. 3, 205–228, http://dx.doi.org/10.1080/01445340.2015.1082050

Towards a Historical Notion of ‘Turing—the
Father of Computer Science’

EDGAR G. DAYLIGHT
Utrecht University, The Netherlands

egdaylight@dijkstrascry.com

Received 14 January 2015 Accepted 3 March 2015

In the popular imagination, the relevance of Turing’s theoretical ideas to people producing actual machines was
significant and appreciated by everybody involved in computing from the moment he published his 1936 paper
‘On Computable Numbers’. Careful historians are aware that this popular conception is deeply misleading. We
know from previous work by Campbell-Kelly, Aspray, Akera, Olley, Priestley, Daylight, Mounier-Kuhn, Haigh,
and others that several computing pioneers, including Aiken, Eckert, Mauchly, and Zuse, did not depend on (let
alone were they aware of) Turing’s 1936 universal-machine concept. Furthermore, it is not clear whether any
substance in von Neumann’s celebrated 1945 ‘First Draft Report on the EDVAC’ is influenced in any identifiable
way by Turing’s work. This raises the questions: (i) When does Turing enter the field? (ii) Why did the Association
for Computing Machinery (ACM) honor Turing by associating his name to ACM’s most prestigious award, the
Turing Award? Previous authors have been rather vague about these questions, suggesting some date between
1950 and the early 1960s as the point at which Turing is retroactively integrated into the foundations of computing
and associating him in some way with the movement to develop something that people call computer science. In
this paper, based on detailed examination of hitherto overlooked primary sources, attempts are made to reconstruct
networks of scholars and ideas prevalent in the 1950s, and to identify a specific group of ACM actors interested
in theorizing about computations in computers and attracted to the idea of language as a frame in which to
understand computation. By going back to Turing’s 1936 paper and, more importantly, to re-cast versions of
Turing’s work published during the 1950s (Rosenbloom, Kleene, Markov), I identify the factors that made this
group of scholars particularly interested in Turing’s work and provided the original vector by which Turing
became to be appreciated in retrospect as the father of computer science.

1. Introduction
In August 1965, Anthony Oettinger and the rest of the Program Committee of the ACM

met and proposed that an annual ‘National Lecture be called the Allen [sic] M. Turing
Lecture’.1 The decision was also made that the ACM should have an awards program.
The ACM Awards Committee was formed in November 1965 (Association of Computing
Machinery 1966a). After having collected information on the award procedures ‘in other
professional societies’, Lewis Clapp—chairman of the ACM Awards Committee—wrote in
August 1966 that

[a]n awards program [···] would be a fitting activity for the Association as it
enhances its own image as a professional society. [···] [I]t would serve to accentuate
new software techniques and theoretical contributions. [···] The award itself might

1 See Association of Computing Machinery (1965, p. 5). The minutes of that meeting state:

Bright reported that the Program Committee recommends that the National ACM Lecture be named the Allen [sic]
M. Turing Lecture. Oettinger moved, seconded by Young that it be so named. Several council members indicated
they were not satisfied with this choice. Juncosa suggested we consider a lecture name that is not that of a person.
vanWormer moved, seconded by Juncosa to table the motion. The vote was: for − 15; opposed − 5; abstention − 2.
(Association of Computing Machinery 1965, p. 11, original emphasis)

© 2015 EDGAR G. DAYLIGHT

36
 C

OM
M

UNIC
ATIO

NS O
F T

HE A
CM

|

OCTOBER 2
014 |

 V
OL. 5

7 |
 N

O. 1
0

V
vie

wpo
int

s

PHOTOGRAPH B
Y T

HOM
AS B

ETHGE

DOI:1
0.1

14
5/

26
29

49
9

Ed
ga

r G
. D

ay
lig

ht

Viewpoin
t

A Turin
g Tale

Asse
ssi

ng th
e accura

cy of p
opular d

escrip
tio

ns

of A
lan Turin

g’s i
nfluences a

nd le
gacy.

word
s m

eant e
xactly

 th
e sam

e to
 every

histo
ric

al a
cto

r. I
n th

is Viewpoin
t, t

hey

re
fer t

o a
 la

rg
e sto

re
 in

sid
e th

e c
om

-

puter,
contain

in
g both

 num
bers and

in
stru

ctio
ns. A

ccord
in

g to
 th

e curre
nt

state of th
e art

in
 th

e histo
ry of c

om
put-

in
g, t

he w
ord

s “sto
re

d p
ro

gra
m

” w
ere

in
tro

duced in
 1

949 b
y IB

M
 e

ngin
eers

in
 Poughkeepsie, N

Y.8

Alth
ough a

ll
th

re
e T

urin
g scholars

have th
eir

own uniq
ue narra

tiv
e th

ru
st,

I w
ill

 discuss H
odges’s 1983 biogra

phy

M
UCH

H

AS
BEEN writ

ten

about
Alan Turin

g dur-

in
g th

e past d
ecades and

by a
 varie

ty
of p

eople, in
-

clu
din

g histo
ria

ns, phi-

losophers, a
nd lo

gicians. B
ecom

in
g a

Turin
g scholar t

oday n
ot o

nly
re

quire
s

archival re
search but

also th
e stu

dy

of
severa

l
secondary

sources.
Doin

g

th
e la

tte
r l

eads to
 th

e observatio
n th

at

m
any t

exts contain
 flaws.

In
 th

is Viewpoin
t,

I com
pare

 and

contra
st s

om
e key arg

um
ents put f

orth

by
th

re
e

Turin
g

scholars—
Andre

w

Hodges, M
arti

n Davis, and Ja
ck Co-

peland—
highlig

htin
g th

e conceptu
al

diff
ere

nce betw
een a “universal Tur-

in
g m

achin
e” and a “sto

re
d p

ro
gra

m
”

com
puter.

M
y findin

gs com
plem

ent

Thom
as Haigh’s Ja

nuary 2014 Com-

municatio
ns H

isto
ric

al R
eflectio

ns col-

um
n, “

Actu
ally

, T
urin

g D
id

 N
ot I

nvent

th
e C

om
puter.”

7

In
 his 1936 paper,

“On C
om

putable

Num
bers,” T

urin
g in

tro
duced h

is a
u-

to
m

atic
 m

achin
es, w

hich d
o n

ot c
on-

tain
 a fi

nite
 outp

ut (
nor a

n in
put)

as is

th
e case w

ith
 th

e la
ter-d

evised “Turin
g

m
achin

es.” T
urin

g w
anted each of h

is

m
achin

es to
 com

pute and p
rin

t a
 re

al

num
ber (

such as π
 and ¼

).
For e

xam
-

ple, t
he m

achin
e com

putin
g ¼

 p
rin

ts

th
e digits

 0 and 1 and th
en fo

re
ver

prin
ts th

e d
igit

0 in
 a

ccord
ance w

ith

¼’s bin
ary re

pre
sentatio

n: 0
.01000…

Durin
g th

e course of t
hre

e decades,

Turin
g, E

m
il P

ost,
Alonzo C

hurch, S
te-

phen K
leene, M

arti
n D

avis, S
aul G

orn
,

and o
th

ers re
cast t

he concept o
f T

ur-

in
g’s 1936 auto

m
atic

 m
achin

e. S
evera

l

ye
ars w

ere
 n

eeded fo
r t

he te
rm

 “
uni-

versal T
urin

g m
achin

e” to
 a

cquire
 a

n

in
varia

nt m
eanin

g.5
,12 M

arti
n D

avis pre
-

sented a m
odern

 definiti
on in

 his 1958

book Computa
bili

ty and Unsolvabili
ty

3

and a d
efiniti

on fo
r t

he la
ym

an in
 h

is

re
cent

book The Universal Computer:

The R
oad fr

om L
eibniz to

 T
urin

g4 —
tw

o

definiti
ons I

abid
e w

ith
 h

ere
 and w

ith

which m
odern

 te
xtb

ooks in
 com

puter

science com
ply.

The m
eanin

g atta
ched to

 th
e w

ord
s

“sto
re

d p
ro

gra
m

” also changed in
 th

e

post-w
ar y

ears and it
 is

 u
nlik

ely th
ose

V
vie

wpo
int

s

MARCH 2015 | VOL. 58 | NO. 3 | COMMUNICATIONS OF THE ACM 37

V viewpoints

IM
AG

E B
Y A

LIC
IA

 K
U

BIS
TA

/A
N

D
RIJ

 B
O

RYS A
SSO

CIA
TES

Viewpoint

Why Did Computer

Science Make a Hero

Out of Turing?

Comparing the legacy of Alan Turing in computer science

with that of Carl Friedrich Gauss in mathematics.

E VERY DISCIPLINE THAT comes

of age consecrates its own

roots in the process. In foot-

notes, anecdotes, and names

of departmental buildings,

occasions are found to remember and

celebrate personalities and ideas that

a discipline considers its own. A dis-

cipline needs heroes to help create a

narrative that legitimizes and fortifies

its own identity. Such a narrative hard-

ly reflects the complexity of histori-

cal reality. Rather, it echoes the set of

preferences and programmatic choic-

es of those in charge of a discipline at

a given moment in a given place. Each

name that gets integrated into an of-

ficialized genealogy is the result of dis-

cussions and negotiations, of politics

and propaganda.

To the general public, the genealo-

gies of physics and mathematics are

probably more familiar than that of

computer science. For physics we go

from Galileo via Newton to Einstein.

For mathematics we begin with Euclid

and progress over Descartes, Leibniz,

Euler and Gauss up to Hilbert. Com-

puter science by contrast is a relatively

young discipline. Nevertheless, it is

already building its own narrative in

which Alan Turing plays a central role.

In the past decennia, and especially

during the 2012 centenary celebration

of Turing, his life and legacy received

an increasing amount of attention.

DOI:10.1145/2658985

Maarten Bullynck, Edgar G. Daylight, and Liesbeth De Mol

V viewpoints

36 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

T
U

R
I

N
G

 P
H

O
T

O
 C

O
U

R
T

E
S

Y
 O

F
 N

A
T

I
O

N
A

L
 P

O
R

T
R

A
I

T
 G

A
L

L
E

R
Y

;
P

A
P

E
R

 I
M

A
G

E
 C

O
U

R
T

E
S

Y
 O

F
 C

H
R

I
S

T
I

E
’S

Historical Reflections
Actually, Turing
Did Not Invent
the Computer
Separating the origins of computer science and technology.

points of Turing’s actual career. In
1936, just two years after completing his
undergraduate degree, he introduced
the concept now called the Turing Ma-
chine in a paper called “On comput-
able numbers, with an application to
the Entscheidungsproblem.” This has
since become the main abstract mod-
el of computation used by computer
scientists. During the Second World
War Turing made several vital contri-
butions as part of the British team try-

THE 100 TH ANNIVERSARY of the
birth of Alan Turing was cel-
ebrated in 2012. The com-
puting community threw its
biggest ever birthday party.

Major events were organized around the
world, including conferences or festi-
vals in Princeton, Cambridge, Manches-
ter, and Israel. There was a concert in
Seattle and an opera in Finland. Dutch
and French researchers built small Tur-
ing Machines out of Lego Mindstorms
kits. Newspaper and magazine articles
by the thousands brought Turing’s life
story to the public. ACM assembled 33
winners of its A.M. Turing Award to dis-
cuss Turing’s ideas and their relation-
ship to the future of computing. Various
buildings, several roads, and at least
one bridge have been named after him.

Dozens of books with Turing’s
name in the title were published or re-
issued. Turing was so ubiquitous that
even George Dyson’s book about John
von Neumann was titled Turing’s Ca-
thedral, becoming the first book on the
history of information technology to
reach a broad audience since the one
about Nazis with punched card ma-
chines. Publishers are well aware there
is a strong audience for books about
Nazis. The public’s hunger for books
about mathematicians and computer
scientists is less acute, making Tur-
ing’s newfound commercial clout both
unlikely and heartening.

Still, as this flood of Turing-related
material begins to recede it is time to
clean up some of the rather bad smell-
ing historical claims left in our meta-
phorical basement. Column space is
short, so I will focus here on the idea
that Turing invented the computer.
Very short version: it is wrong.

In case you spent 2012 in a maxi-
mum-security prison or meditating
in a Tibetan monastery, let me briefly
summarize the computer-related high

DOI:10.1145/2542504 Thomas Haigh

Alan Turing (left); the cover page of Turing’s paper “On computable numbers, with
an application to the Entscheidungsproblem” (right).

5 / 58

Is Alan Turing the father of computer
science?

HISTORY AND PHILOSOPHY OF LOGIC, 2015
Vol. 36, No. 3, 205–228, http://dx.doi.org/10.1080/01445340.2015.1082050

Towards a Historical Notion of ‘Turing—the
Father of Computer Science’

EDGAR G. DAYLIGHT
Utrecht University, The Netherlands

egdaylight@dijkstrascry.com

Received 14 January 2015 Accepted 3 March 2015

In the popular imagination, the relevance of Turing’s theoretical ideas to people producing actual machines was
significant and appreciated by everybody involved in computing from the moment he published his 1936 paper
‘On Computable Numbers’. Careful historians are aware that this popular conception is deeply misleading. We
know from previous work by Campbell-Kelly, Aspray, Akera, Olley, Priestley, Daylight, Mounier-Kuhn, Haigh,
and others that several computing pioneers, including Aiken, Eckert, Mauchly, and Zuse, did not depend on (let
alone were they aware of) Turing’s 1936 universal-machine concept. Furthermore, it is not clear whether any
substance in von Neumann’s celebrated 1945 ‘First Draft Report on the EDVAC’ is influenced in any identifiable
way by Turing’s work. This raises the questions: (i) When does Turing enter the field? (ii) Why did the Association
for Computing Machinery (ACM) honor Turing by associating his name to ACM’s most prestigious award, the
Turing Award? Previous authors have been rather vague about these questions, suggesting some date between
1950 and the early 1960s as the point at which Turing is retroactively integrated into the foundations of computing
and associating him in some way with the movement to develop something that people call computer science. In
this paper, based on detailed examination of hitherto overlooked primary sources, attempts are made to reconstruct
networks of scholars and ideas prevalent in the 1950s, and to identify a specific group of ACM actors interested
in theorizing about computations in computers and attracted to the idea of language as a frame in which to
understand computation. By going back to Turing’s 1936 paper and, more importantly, to re-cast versions of
Turing’s work published during the 1950s (Rosenbloom, Kleene, Markov), I identify the factors that made this
group of scholars particularly interested in Turing’s work and provided the original vector by which Turing
became to be appreciated in retrospect as the father of computer science.

1. Introduction
In August 1965, Anthony Oettinger and the rest of the Program Committee of the ACM

met and proposed that an annual ‘National Lecture be called the Allen [sic] M. Turing
Lecture’.1 The decision was also made that the ACM should have an awards program.
The ACM Awards Committee was formed in November 1965 (Association of Computing
Machinery 1966a). After having collected information on the award procedures ‘in other
professional societies’, Lewis Clapp—chairman of the ACM Awards Committee—wrote in
August 1966 that

[a]n awards program [···] would be a fitting activity for the Association as it
enhances its own image as a professional society. [···] [I]t would serve to accentuate
new software techniques and theoretical contributions. [···] The award itself might

1 See Association of Computing Machinery (1965, p. 5). The minutes of that meeting state:

Bright reported that the Program Committee recommends that the National ACM Lecture be named the Allen [sic]
M. Turing Lecture. Oettinger moved, seconded by Young that it be so named. Several council members indicated
they were not satisfied with this choice. Juncosa suggested we consider a lecture name that is not that of a person.
vanWormer moved, seconded by Juncosa to table the motion. The vote was: for − 15; opposed − 5; abstention − 2.
(Association of Computing Machinery 1965, p. 11, original emphasis)

© 2015 EDGAR G. DAYLIGHT

36
 C

OM
M

UNIC
ATIO

NS O
F T

HE A
CM

|

OCTOBER 2
014 |

 V
OL. 5

7 |
 N

O. 1
0

V
vie

wpo
int

s

PHOTOGRAPH B
Y T

HOM
AS B

ETHGE

DOI:1
0.1

14
5/

26
29

49
9

Ed
ga

r G
. D

ay
lig

ht

Viewpoin
t

A Turin
g Tale

Asse
ssi

ng th
e accura

cy of p
opular d

escrip
tio

ns

of A
lan Turin

g’s i
nfluences a

nd le
gacy.

word
s m

eant e
xactly

 th
e sam

e to
 every

histo
ric

al a
cto

r. I
n th

is Viewpoin
t, t

hey

re
fer t

o a
 la

rg
e sto

re
 in

sid
e th

e c
om

-

puter,
contain

in
g both

 num
bers and

in
stru

ctio
ns. A

ccord
in

g to
 th

e curre
nt

state of th
e art

in
 th

e histo
ry of c

om
put-

in
g, t

he w
ord

s “sto
re

d p
ro

gra
m

” w
ere

in
tro

duced in
 1

949 b
y IB

M
 e

ngin
eers

in
 Poughkeepsie, N

Y.8

Alth
ough a

ll
th

re
e T

urin
g scholars

have th
eir

own uniq
ue narra

tiv
e th

ru
st,

I w
ill

 discuss H
odges’s 1983 biogra

phy

M
UCH

H

AS
BEEN writ

ten

about
Alan Turin

g dur-

in
g th

e past d
ecades and

by a
 varie

ty
of p

eople, in
-

clu
din

g histo
ria

ns, phi-

losophers, a
nd lo

gicians. B
ecom

in
g a

Turin
g scholar t

oday n
ot o

nly
re

quire
s

archival re
search but

also th
e stu

dy

of
severa

l
secondary

sources.
Doin

g

th
e la

tte
r l

eads to
 th

e observatio
n th

at

m
any t

exts contain
 flaws.

In
 th

is Viewpoin
t,

I com
pare

 and

contra
st s

om
e key arg

um
ents put f

orth

by
th

re
e

Turin
g

scholars—
Andre

w

Hodges, M
arti

n Davis, and Ja
ck Co-

peland—
highlig

htin
g th

e conceptu
al

diff
ere

nce betw
een a “universal Tur-

in
g m

achin
e” and a “sto

re
d p

ro
gra

m
”

com
puter.

M
y findin

gs com
plem

ent

Thom
as Haigh’s Ja

nuary 2014 Com-

municatio
ns H

isto
ric

al R
eflectio

ns col-

um
n, “

Actu
ally

, T
urin

g D
id

 N
ot I

nvent

th
e C

om
puter.”

7

In
 his 1936 paper,

“On C
om

putable

Num
bers,” T

urin
g in

tro
duced h

is a
u-

to
m

atic
 m

achin
es, w

hich d
o n

ot c
on-

tain
 a fi

nite
 outp

ut (
nor a

n in
put)

as is

th
e case w

ith
 th

e la
ter-d

evised “Turin
g

m
achin

es.” T
urin

g w
anted each of h

is

m
achin

es to
 com

pute and p
rin

t a
 re

al

num
ber (

such as π
 and ¼

).
For e

xam
-

ple, t
he m

achin
e com

putin
g ¼

 p
rin

ts

th
e digits

 0 and 1 and th
en fo

re
ver

prin
ts th

e d
igit

0 in
 a

ccord
ance w

ith

¼’s bin
ary re

pre
sentatio

n: 0
.01000…

Durin
g th

e course of t
hre

e decades,

Turin
g, E

m
il P

ost,
Alonzo C

hurch, S
te-

phen K
leene, M

arti
n D

avis, S
aul G

orn
,

and o
th

ers re
cast t

he concept o
f T

ur-

in
g’s 1936 auto

m
atic

 m
achin

e. S
evera

l

ye
ars w

ere
 n

eeded fo
r t

he te
rm

 “
uni-

versal T
urin

g m
achin

e” to
 a

cquire
 a

n

in
varia

nt m
eanin

g.5
,12 M

arti
n D

avis pre
-

sented a m
odern

 definiti
on in

 his 1958

book Computa
bili

ty and Unsolvabili
ty

3

and a d
efiniti

on fo
r t

he la
ym

an in
 h

is

re
cent

book The Universal Computer:

The R
oad fr

om L
eibniz to

 T
urin

g4 —
tw

o

definiti
ons I

abid
e w

ith
 h

ere
 and w

ith

which m
odern

 te
xtb

ooks in
 com

puter

science com
ply.

The m
eanin

g atta
ched to

 th
e w

ord
s

“sto
re

d p
ro

gra
m

” also changed in
 th

e

post-w
ar y

ears and it
 is

 u
nlik

ely th
ose

V
vie

wpo
int

s

MARCH 2015 | VOL. 58 | NO. 3 | COMMUNICATIONS OF THE ACM 37

V viewpoints

IM
AG

E B
Y A

LIC
IA

 K
U

BIS
TA

/A
N

D
RIJ

 B
O

RYS A
SSO

CIA
TES

Viewpoint

Why Did Computer

Science Make a Hero

Out of Turing?

Comparing the legacy of Alan Turing in computer science

with that of Carl Friedrich Gauss in mathematics.

E VERY DISCIPLINE THAT comes

of age consecrates its own

roots in the process. In foot-

notes, anecdotes, and names

of departmental buildings,

occasions are found to remember and

celebrate personalities and ideas that

a discipline considers its own. A dis-

cipline needs heroes to help create a

narrative that legitimizes and fortifies

its own identity. Such a narrative hard-

ly reflects the complexity of histori-

cal reality. Rather, it echoes the set of

preferences and programmatic choic-

es of those in charge of a discipline at

a given moment in a given place. Each

name that gets integrated into an of-

ficialized genealogy is the result of dis-

cussions and negotiations, of politics

and propaganda.

To the general public, the genealo-

gies of physics and mathematics are

probably more familiar than that of

computer science. For physics we go

from Galileo via Newton to Einstein.

For mathematics we begin with Euclid

and progress over Descartes, Leibniz,

Euler and Gauss up to Hilbert. Com-

puter science by contrast is a relatively

young discipline. Nevertheless, it is

already building its own narrative in

which Alan Turing plays a central role.

In the past decennia, and especially

during the 2012 centenary celebration

of Turing, his life and legacy received

an increasing amount of attention.

DOI:10.1145/2658985

Maarten Bullynck, Edgar G. Daylight, and Liesbeth De Mol

V viewpoints

36 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

T
U

R
I

N
G

 P
H

O
T

O
 C

O
U

R
T

E
S

Y
 O

F
 N

A
T

I
O

N
A

L
 P

O
R

T
R

A
I

T
 G

A
L

L
E

R
Y

;
P

A
P

E
R

 I
M

A
G

E
 C

O
U

R
T

E
S

Y
 O

F
 C

H
R

I
S

T
I

E
’S

Historical Reflections
Actually, Turing
Did Not Invent
the Computer
Separating the origins of computer science and technology.

points of Turing’s actual career. In
1936, just two years after completing his
undergraduate degree, he introduced
the concept now called the Turing Ma-
chine in a paper called “On comput-
able numbers, with an application to
the Entscheidungsproblem.” This has
since become the main abstract mod-
el of computation used by computer
scientists. During the Second World
War Turing made several vital contri-
butions as part of the British team try-

THE 100 TH ANNIVERSARY of the
birth of Alan Turing was cel-
ebrated in 2012. The com-
puting community threw its
biggest ever birthday party.

Major events were organized around the
world, including conferences or festi-
vals in Princeton, Cambridge, Manches-
ter, and Israel. There was a concert in
Seattle and an opera in Finland. Dutch
and French researchers built small Tur-
ing Machines out of Lego Mindstorms
kits. Newspaper and magazine articles
by the thousands brought Turing’s life
story to the public. ACM assembled 33
winners of its A.M. Turing Award to dis-
cuss Turing’s ideas and their relation-
ship to the future of computing. Various
buildings, several roads, and at least
one bridge have been named after him.

Dozens of books with Turing’s
name in the title were published or re-
issued. Turing was so ubiquitous that
even George Dyson’s book about John
von Neumann was titled Turing’s Ca-
thedral, becoming the first book on the
history of information technology to
reach a broad audience since the one
about Nazis with punched card ma-
chines. Publishers are well aware there
is a strong audience for books about
Nazis. The public’s hunger for books
about mathematicians and computer
scientists is less acute, making Tur-
ing’s newfound commercial clout both
unlikely and heartening.

Still, as this flood of Turing-related
material begins to recede it is time to
clean up some of the rather bad smell-
ing historical claims left in our meta-
phorical basement. Column space is
short, so I will focus here on the idea
that Turing invented the computer.
Very short version: it is wrong.

In case you spent 2012 in a maxi-
mum-security prison or meditating
in a Tibetan monastery, let me briefly
summarize the computer-related high

DOI:10.1145/2542504 Thomas Haigh

Alan Turing (left); the cover page of Turing’s paper “On computable numbers, with
an application to the Entscheidungsproblem” (right).

6 / 58

Is Alan Turing the father of computer
science?

HISTORY AND PHILOSOPHY OF LOGIC, 2015
Vol. 36, No. 3, 205–228, http://dx.doi.org/10.1080/01445340.2015.1082050

Towards a Historical Notion of ‘Turing—the
Father of Computer Science’

EDGAR G. DAYLIGHT
Utrecht University, The Netherlands

egdaylight@dijkstrascry.com

Received 14 January 2015 Accepted 3 March 2015

In the popular imagination, the relevance of Turing’s theoretical ideas to people producing actual machines was
significant and appreciated by everybody involved in computing from the moment he published his 1936 paper
‘On Computable Numbers’. Careful historians are aware that this popular conception is deeply misleading. We
know from previous work by Campbell-Kelly, Aspray, Akera, Olley, Priestley, Daylight, Mounier-Kuhn, Haigh,
and others that several computing pioneers, including Aiken, Eckert, Mauchly, and Zuse, did not depend on (let
alone were they aware of) Turing’s 1936 universal-machine concept. Furthermore, it is not clear whether any
substance in von Neumann’s celebrated 1945 ‘First Draft Report on the EDVAC’ is influenced in any identifiable
way by Turing’s work. This raises the questions: (i) When does Turing enter the field? (ii) Why did the Association
for Computing Machinery (ACM) honor Turing by associating his name to ACM’s most prestigious award, the
Turing Award? Previous authors have been rather vague about these questions, suggesting some date between
1950 and the early 1960s as the point at which Turing is retroactively integrated into the foundations of computing
and associating him in some way with the movement to develop something that people call computer science. In
this paper, based on detailed examination of hitherto overlooked primary sources, attempts are made to reconstruct
networks of scholars and ideas prevalent in the 1950s, and to identify a specific group of ACM actors interested
in theorizing about computations in computers and attracted to the idea of language as a frame in which to
understand computation. By going back to Turing’s 1936 paper and, more importantly, to re-cast versions of
Turing’s work published during the 1950s (Rosenbloom, Kleene, Markov), I identify the factors that made this
group of scholars particularly interested in Turing’s work and provided the original vector by which Turing
became to be appreciated in retrospect as the father of computer science.

1. Introduction
In August 1965, Anthony Oettinger and the rest of the Program Committee of the ACM

met and proposed that an annual ‘National Lecture be called the Allen [sic] M. Turing
Lecture’.1 The decision was also made that the ACM should have an awards program.
The ACM Awards Committee was formed in November 1965 (Association of Computing
Machinery 1966a). After having collected information on the award procedures ‘in other
professional societies’, Lewis Clapp—chairman of the ACM Awards Committee—wrote in
August 1966 that

[a]n awards program [···] would be a fitting activity for the Association as it
enhances its own image as a professional society. [···] [I]t would serve to accentuate
new software techniques and theoretical contributions. [···] The award itself might

1 See Association of Computing Machinery (1965, p. 5). The minutes of that meeting state:

Bright reported that the Program Committee recommends that the National ACM Lecture be named the Allen [sic]
M. Turing Lecture. Oettinger moved, seconded by Young that it be so named. Several council members indicated
they were not satisfied with this choice. Juncosa suggested we consider a lecture name that is not that of a person.
vanWormer moved, seconded by Juncosa to table the motion. The vote was: for − 15; opposed − 5; abstention − 2.
(Association of Computing Machinery 1965, p. 11, original emphasis)

© 2015 EDGAR G. DAYLIGHT

36
 C

OM
M

UNIC
ATIO

NS O
F T

HE A
CM

|

OCTOBER 2
014 |

 V
OL. 5

7 |
 N

O. 1
0

V
vie

wpo
int

s

PHOTOGRAPH B
Y T

HOM
AS B

ETHGE

DOI:1
0.1

14
5/

26
29

49
9

Ed
ga

r G
. D

ay
lig

ht

Viewpoin
t

A Turin
g Tale

Asse
ssi

ng th
e accura

cy of p
opular d

escrip
tio

ns

of A
lan Turin

g’s i
nfluences a

nd le
gacy.

word
s m

eant e
xactly

 th
e sam

e to
 every

histo
ric

al a
cto

r. I
n th

is Viewpoin
t, t

hey

re
fer t

o a
 la

rg
e sto

re
 in

sid
e th

e c
om

-

puter,
contain

in
g both

 num
bers and

in
stru

ctio
ns. A

ccord
in

g to
 th

e curre
nt

state of th
e art

in
 th

e histo
ry of c

om
put-

in
g, t

he w
ord

s “sto
re

d p
ro

gra
m

” w
ere

in
tro

duced in
 1

949 b
y IB

M
 e

ngin
eers

in
 Poughkeepsie, N

Y.8

Alth
ough a

ll
th

re
e T

urin
g scholars

have th
eir

own uniq
ue narra

tiv
e th

ru
st,

I w
ill

 discuss H
odges’s 1983 biogra

phy

M
UCH

H

AS
BEEN writ

ten

about
Alan Turin

g dur-

in
g th

e past d
ecades and

by a
 varie

ty
of p

eople, in
-

clu
din

g histo
ria

ns, phi-

losophers, a
nd lo

gicians. B
ecom

in
g a

Turin
g scholar t

oday n
ot o

nly
re

quire
s

archival re
search but

also th
e stu

dy

of
severa

l
secondary

sources.
Doin

g

th
e la

tte
r l

eads to
 th

e observatio
n th

at

m
any t

exts contain
 flaws.

In
 th

is Viewpoin
t,

I com
pare

 and

contra
st s

om
e key arg

um
ents put f

orth

by
th

re
e

Turin
g

scholars—
Andre

w

Hodges, M
arti

n Davis, and Ja
ck Co-

peland—
highlig

htin
g th

e conceptu
al

diff
ere

nce betw
een a “universal Tur-

in
g m

achin
e” and a “sto

re
d p

ro
gra

m
”

com
puter.

M
y findin

gs com
plem

ent

Thom
as Haigh’s Ja

nuary 2014 Com-

municatio
ns H

isto
ric

al R
eflectio

ns col-

um
n, “

Actu
ally

, T
urin

g D
id

 N
ot I

nvent

th
e C

om
puter.”

7

In
 his 1936 paper,

“On C
om

putable

Num
bers,” T

urin
g in

tro
duced h

is a
u-

to
m

atic
 m

achin
es, w

hich d
o n

ot c
on-

tain
 a fi

nite
 outp

ut (
nor a

n in
put)

as is

th
e case w

ith
 th

e la
ter-d

evised “Turin
g

m
achin

es.” T
urin

g w
anted each of h

is

m
achin

es to
 com

pute and p
rin

t a
 re

al

num
ber (

such as π
 and ¼

).
For e

xam
-

ple, t
he m

achin
e com

putin
g ¼

 p
rin

ts

th
e digits

 0 and 1 and th
en fo

re
ver

prin
ts th

e d
igit

0 in
 a

ccord
ance w

ith

¼’s bin
ary re

pre
sentatio

n: 0
.01000…

Durin
g th

e course of t
hre

e decades,

Turin
g, E

m
il P

ost,
Alonzo C

hurch, S
te-

phen K
leene, M

arti
n D

avis, S
aul G

orn
,

and o
th

ers re
cast t

he concept o
f T

ur-

in
g’s 1936 auto

m
atic

 m
achin

e. S
evera

l

ye
ars w

ere
 n

eeded fo
r t

he te
rm

 “
uni-

versal T
urin

g m
achin

e” to
 a

cquire
 a

n

in
varia

nt m
eanin

g.5
,12 M

arti
n D

avis pre
-

sented a m
odern

 definiti
on in

 his 1958

book Computa
bili

ty and Unsolvabili
ty

3

and a d
efiniti

on fo
r t

he la
ym

an in
 h

is

re
cent

book The Universal Computer:

The R
oad fr

om L
eibniz to

 T
urin

g4 —
tw

o

definiti
ons I

abid
e w

ith
 h

ere
 and w

ith

which m
odern

 te
xtb

ooks in
 com

puter

science com
ply.

The m
eanin

g atta
ched to

 th
e w

ord
s

“sto
re

d p
ro

gra
m

” also changed in
 th

e

post-w
ar y

ears and it
 is

 u
nlik

ely th
ose

V
vie

wpo
int

s

MARCH 2015 | VOL. 58 | NO. 3 | COMMUNICATIONS OF THE ACM 37

V viewpoints

IM
AG

E B
Y A

LIC
IA

 K
U

BIS
TA

/A
N

D
RIJ

 B
O

RYS A
SSO

CIA
TES

Viewpoint

Why Did Computer

Science Make a Hero

Out of Turing?

Comparing the legacy of Alan Turing in computer science

with that of Carl Friedrich Gauss in mathematics.

E VERY DISCIPLINE THAT comes

of age consecrates its own

roots in the process. In foot-

notes, anecdotes, and names

of departmental buildings,

occasions are found to remember and

celebrate personalities and ideas that

a discipline considers its own. A dis-

cipline needs heroes to help create a

narrative that legitimizes and fortifies

its own identity. Such a narrative hard-

ly reflects the complexity of histori-

cal reality. Rather, it echoes the set of

preferences and programmatic choic-

es of those in charge of a discipline at

a given moment in a given place. Each

name that gets integrated into an of-

ficialized genealogy is the result of dis-

cussions and negotiations, of politics

and propaganda.

To the general public, the genealo-

gies of physics and mathematics are

probably more familiar than that of

computer science. For physics we go

from Galileo via Newton to Einstein.

For mathematics we begin with Euclid

and progress over Descartes, Leibniz,

Euler and Gauss up to Hilbert. Com-

puter science by contrast is a relatively

young discipline. Nevertheless, it is

already building its own narrative in

which Alan Turing plays a central role.

In the past decennia, and especially

during the 2012 centenary celebration

of Turing, his life and legacy received

an increasing amount of attention.

DOI:10.1145/2658985

Maarten Bullynck, Edgar G. Daylight, and Liesbeth De Mol

V viewpoints

36 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

T
U

R
I

N
G

 P
H

O
T

O
 C

O
U

R
T

E
S

Y
 O

F
 N

A
T

I
O

N
A

L
 P

O
R

T
R

A
I

T
 G

A
L

L
E

R
Y

;
P

A
P

E
R

 I
M

A
G

E
 C

O
U

R
T

E
S

Y
 O

F
 C

H
R

I
S

T
I

E
’S

Historical Reflections
Actually, Turing
Did Not Invent
the Computer
Separating the origins of computer science and technology.

points of Turing’s actual career. In
1936, just two years after completing his
undergraduate degree, he introduced
the concept now called the Turing Ma-
chine in a paper called “On comput-
able numbers, with an application to
the Entscheidungsproblem.” This has
since become the main abstract mod-
el of computation used by computer
scientists. During the Second World
War Turing made several vital contri-
butions as part of the British team try-

THE 100 TH ANNIVERSARY of the
birth of Alan Turing was cel-
ebrated in 2012. The com-
puting community threw its
biggest ever birthday party.

Major events were organized around the
world, including conferences or festi-
vals in Princeton, Cambridge, Manches-
ter, and Israel. There was a concert in
Seattle and an opera in Finland. Dutch
and French researchers built small Tur-
ing Machines out of Lego Mindstorms
kits. Newspaper and magazine articles
by the thousands brought Turing’s life
story to the public. ACM assembled 33
winners of its A.M. Turing Award to dis-
cuss Turing’s ideas and their relation-
ship to the future of computing. Various
buildings, several roads, and at least
one bridge have been named after him.

Dozens of books with Turing’s
name in the title were published or re-
issued. Turing was so ubiquitous that
even George Dyson’s book about John
von Neumann was titled Turing’s Ca-
thedral, becoming the first book on the
history of information technology to
reach a broad audience since the one
about Nazis with punched card ma-
chines. Publishers are well aware there
is a strong audience for books about
Nazis. The public’s hunger for books
about mathematicians and computer
scientists is less acute, making Tur-
ing’s newfound commercial clout both
unlikely and heartening.

Still, as this flood of Turing-related
material begins to recede it is time to
clean up some of the rather bad smell-
ing historical claims left in our meta-
phorical basement. Column space is
short, so I will focus here on the idea
that Turing invented the computer.
Very short version: it is wrong.

In case you spent 2012 in a maxi-
mum-security prison or meditating
in a Tibetan monastery, let me briefly
summarize the computer-related high

DOI:10.1145/2542504 Thomas Haigh

Alan Turing (left); the cover page of Turing’s paper “On computable numbers, with
an application to the Entscheidungsproblem” (right).

7 / 58

Is Alan Turing the father of computer
science?

HISTORY AND PHILOSOPHY OF LOGIC, 2015
Vol. 36, No. 3, 205–228, http://dx.doi.org/10.1080/01445340.2015.1082050

Towards a Historical Notion of ‘Turing—the
Father of Computer Science’

EDGAR G. DAYLIGHT
Utrecht University, The Netherlands

egdaylight@dijkstrascry.com

Received 14 January 2015 Accepted 3 March 2015

In the popular imagination, the relevance of Turing’s theoretical ideas to people producing actual machines was
significant and appreciated by everybody involved in computing from the moment he published his 1936 paper
‘On Computable Numbers’. Careful historians are aware that this popular conception is deeply misleading. We
know from previous work by Campbell-Kelly, Aspray, Akera, Olley, Priestley, Daylight, Mounier-Kuhn, Haigh,
and others that several computing pioneers, including Aiken, Eckert, Mauchly, and Zuse, did not depend on (let
alone were they aware of) Turing’s 1936 universal-machine concept. Furthermore, it is not clear whether any
substance in von Neumann’s celebrated 1945 ‘First Draft Report on the EDVAC’ is influenced in any identifiable
way by Turing’s work. This raises the questions: (i) When does Turing enter the field? (ii) Why did the Association
for Computing Machinery (ACM) honor Turing by associating his name to ACM’s most prestigious award, the
Turing Award? Previous authors have been rather vague about these questions, suggesting some date between
1950 and the early 1960s as the point at which Turing is retroactively integrated into the foundations of computing
and associating him in some way with the movement to develop something that people call computer science. In
this paper, based on detailed examination of hitherto overlooked primary sources, attempts are made to reconstruct
networks of scholars and ideas prevalent in the 1950s, and to identify a specific group of ACM actors interested
in theorizing about computations in computers and attracted to the idea of language as a frame in which to
understand computation. By going back to Turing’s 1936 paper and, more importantly, to re-cast versions of
Turing’s work published during the 1950s (Rosenbloom, Kleene, Markov), I identify the factors that made this
group of scholars particularly interested in Turing’s work and provided the original vector by which Turing
became to be appreciated in retrospect as the father of computer science.

1. Introduction
In August 1965, Anthony Oettinger and the rest of the Program Committee of the ACM

met and proposed that an annual ‘National Lecture be called the Allen [sic] M. Turing
Lecture’.1 The decision was also made that the ACM should have an awards program.
The ACM Awards Committee was formed in November 1965 (Association of Computing
Machinery 1966a). After having collected information on the award procedures ‘in other
professional societies’, Lewis Clapp—chairman of the ACM Awards Committee—wrote in
August 1966 that

[a]n awards program [···] would be a fitting activity for the Association as it
enhances its own image as a professional society. [···] [I]t would serve to accentuate
new software techniques and theoretical contributions. [···] The award itself might

1 See Association of Computing Machinery (1965, p. 5). The minutes of that meeting state:

Bright reported that the Program Committee recommends that the National ACM Lecture be named the Allen [sic]
M. Turing Lecture. Oettinger moved, seconded by Young that it be so named. Several council members indicated
they were not satisfied with this choice. Juncosa suggested we consider a lecture name that is not that of a person.
vanWormer moved, seconded by Juncosa to table the motion. The vote was: for − 15; opposed − 5; abstention − 2.
(Association of Computing Machinery 1965, p. 11, original emphasis)

© 2015 EDGAR G. DAYLIGHT

36
 C

OM
M

UNIC
ATIO

NS O
F T

HE A
CM

|

OCTOBER 2
014 |

 V
OL. 5

7 |
 N

O. 1
0

V
vie

wpo
int

s

PHOTOGRAPH B
Y T

HOM
AS B

ETHGE

DOI:1
0.1

14
5/

26
29

49
9

Ed
ga

r G
. D

ay
lig

ht

Viewpoin
t

A Turin
g Tale

Asse
ssi

ng th
e accura

cy of p
opular d

escrip
tio

ns

of A
lan Turin

g’s i
nfluences a

nd le
gacy.

word
s m

eant e
xactly

 th
e sam

e to
 every

histo
ric

al a
cto

r. I
n th

is Viewpoin
t, t

hey

re
fer t

o a
 la

rg
e sto

re
 in

sid
e th

e c
om

-

puter,
contain

in
g both

 num
bers and

in
stru

ctio
ns. A

ccord
in

g to
 th

e curre
nt

state of th
e art

in
 th

e histo
ry of c

om
put-

in
g, t

he w
ord

s “sto
re

d p
ro

gra
m

” w
ere

in
tro

duced in
 1

949 b
y IB

M
 e

ngin
eers

in
 Poughkeepsie, N

Y.8

Alth
ough a

ll
th

re
e T

urin
g scholars

have th
eir

own uniq
ue narra

tiv
e th

ru
st,

I w
ill

 discuss H
odges’s 1983 biogra

phy

M
UCH

H

AS
BEEN writ

ten

about
Alan Turin

g dur-

in
g th

e past d
ecades and

by a
 varie

ty
of p

eople, in
-

clu
din

g histo
ria

ns, phi-

losophers, a
nd lo

gicians. B
ecom

in
g a

Turin
g scholar t

oday n
ot o

nly
re

quire
s

archival re
search but

also th
e stu

dy

of
severa

l
secondary

sources.
Doin

g

th
e la

tte
r l

eads to
 th

e observatio
n th

at

m
any t

exts contain
 flaws.

In
 th

is Viewpoin
t,

I com
pare

 and

contra
st s

om
e key arg

um
ents put f

orth

by
th

re
e

Turin
g

scholars—
Andre

w

Hodges, M
arti

n Davis, and Ja
ck Co-

peland—
highlig

htin
g th

e conceptu
al

diff
ere

nce betw
een a “universal Tur-

in
g m

achin
e” and a “sto

re
d p

ro
gra

m
”

com
puter.

M
y findin

gs com
plem

ent

Thom
as Haigh’s Ja

nuary 2014 Com-

municatio
ns H

isto
ric

al R
eflectio

ns col-

um
n, “

Actu
ally

, T
urin

g D
id

 N
ot I

nvent

th
e C

om
puter.”

7

In
 his 1936 paper,

“On C
om

putable

Num
bers,” T

urin
g in

tro
duced h

is a
u-

to
m

atic
 m

achin
es, w

hich d
o n

ot c
on-

tain
 a fi

nite
 outp

ut (
nor a

n in
put)

as is

th
e case w

ith
 th

e la
ter-d

evised “Turin
g

m
achin

es.” T
urin

g w
anted each of h

is

m
achin

es to
 com

pute and p
rin

t a
 re

al

num
ber (

such as π
 and ¼

).
For e

xam
-

ple, t
he m

achin
e com

putin
g ¼

 p
rin

ts

th
e digits

 0 and 1 and th
en fo

re
ver

prin
ts th

e d
igit

0 in
 a

ccord
ance w

ith

¼’s bin
ary re

pre
sentatio

n: 0
.01000…

Durin
g th

e course of t
hre

e decades,

Turin
g, E

m
il P

ost,
Alonzo C

hurch, S
te-

phen K
leene, M

arti
n D

avis, S
aul G

orn
,

and o
th

ers re
cast t

he concept o
f T

ur-

in
g’s 1936 auto

m
atic

 m
achin

e. S
evera

l

ye
ars w

ere
 n

eeded fo
r t

he te
rm

 “
uni-

versal T
urin

g m
achin

e” to
 a

cquire
 a

n

in
varia

nt m
eanin

g.5
,12 M

arti
n D

avis pre
-

sented a m
odern

 definiti
on in

 his 1958

book Computa
bili

ty and Unsolvabili
ty

3

and a d
efiniti

on fo
r t

he la
ym

an in
 h

is

re
cent

book The Universal Computer:

The R
oad fr

om L
eibniz to

 T
urin

g4 —
tw

o

definiti
ons I

abid
e w

ith
 h

ere
 and w

ith

which m
odern

 te
xtb

ooks in
 com

puter

science com
ply.

The m
eanin

g atta
ched to

 th
e w

ord
s

“sto
re

d p
ro

gra
m

” also changed in
 th

e

post-w
ar y

ears and it
 is

 u
nlik

ely th
ose

V
vie

wpo
int

s

MARCH 2015 | VOL. 58 | NO. 3 | COMMUNICATIONS OF THE ACM 37

V viewpoints

IM
AG

E B
Y A

LIC
IA

 K
U

BIS
TA

/A
N

D
RIJ

 B
O

RYS A
SSO

CIA
TES

Viewpoint

Why Did Computer

Science Make a Hero

Out of Turing?

Comparing the legacy of Alan Turing in computer science

with that of Carl Friedrich Gauss in mathematics.

E VERY DISCIPLINE THAT comes

of age consecrates its own

roots in the process. In foot-

notes, anecdotes, and names

of departmental buildings,

occasions are found to remember and

celebrate personalities and ideas that

a discipline considers its own. A dis-

cipline needs heroes to help create a

narrative that legitimizes and fortifies

its own identity. Such a narrative hard-

ly reflects the complexity of histori-

cal reality. Rather, it echoes the set of

preferences and programmatic choic-

es of those in charge of a discipline at

a given moment in a given place. Each

name that gets integrated into an of-

ficialized genealogy is the result of dis-

cussions and negotiations, of politics

and propaganda.

To the general public, the genealo-

gies of physics and mathematics are

probably more familiar than that of

computer science. For physics we go

from Galileo via Newton to Einstein.

For mathematics we begin with Euclid

and progress over Descartes, Leibniz,

Euler and Gauss up to Hilbert. Com-

puter science by contrast is a relatively

young discipline. Nevertheless, it is

already building its own narrative in

which Alan Turing plays a central role.

In the past decennia, and especially

during the 2012 centenary celebration

of Turing, his life and legacy received

an increasing amount of attention.

DOI:10.1145/2658985

Maarten Bullynck, Edgar G. Daylight, and Liesbeth De Mol

V viewpoints

36 COMMUNICATIONS OF THE ACM | JANUARY 2014 | VOL. 57 | NO. 1

T
U

R
I

N
G

 P
H

O
T

O
 C

O
U

R
T

E
S

Y
 O

F
 N

A
T

I
O

N
A

L
 P

O
R

T
R

A
I

T
 G

A
L

L
E

R
Y

;
P

A
P

E
R

 I
M

A
G

E
 C

O
U

R
T

E
S

Y
 O

F
 C

H
R

I
S

T
I

E
’S

Historical Reflections
Actually, Turing
Did Not Invent
the Computer
Separating the origins of computer science and technology.

points of Turing’s actual career. In
1936, just two years after completing his
undergraduate degree, he introduced
the concept now called the Turing Ma-
chine in a paper called “On comput-
able numbers, with an application to
the Entscheidungsproblem.” This has
since become the main abstract mod-
el of computation used by computer
scientists. During the Second World
War Turing made several vital contri-
butions as part of the British team try-

THE 100 TH ANNIVERSARY of the
birth of Alan Turing was cel-
ebrated in 2012. The com-
puting community threw its
biggest ever birthday party.

Major events were organized around the
world, including conferences or festi-
vals in Princeton, Cambridge, Manches-
ter, and Israel. There was a concert in
Seattle and an opera in Finland. Dutch
and French researchers built small Tur-
ing Machines out of Lego Mindstorms
kits. Newspaper and magazine articles
by the thousands brought Turing’s life
story to the public. ACM assembled 33
winners of its A.M. Turing Award to dis-
cuss Turing’s ideas and their relation-
ship to the future of computing. Various
buildings, several roads, and at least
one bridge have been named after him.

Dozens of books with Turing’s
name in the title were published or re-
issued. Turing was so ubiquitous that
even George Dyson’s book about John
von Neumann was titled Turing’s Ca-
thedral, becoming the first book on the
history of information technology to
reach a broad audience since the one
about Nazis with punched card ma-
chines. Publishers are well aware there
is a strong audience for books about
Nazis. The public’s hunger for books
about mathematicians and computer
scientists is less acute, making Tur-
ing’s newfound commercial clout both
unlikely and heartening.

Still, as this flood of Turing-related
material begins to recede it is time to
clean up some of the rather bad smell-
ing historical claims left in our meta-
phorical basement. Column space is
short, so I will focus here on the idea
that Turing invented the computer.
Very short version: it is wrong.

In case you spent 2012 in a maxi-
mum-security prison or meditating
in a Tibetan monastery, let me briefly
summarize the computer-related high

DOI:10.1145/2542504 Thomas Haigh

Alan Turing (left); the cover page of Turing’s paper “On computable numbers, with
an application to the Entscheidungsproblem” (right).

8 / 58

Is Alan Turing the father of computer
science?

9 / 58

Is Alan Turing the father of computer
science?

10 / 58

H. Bergson

the retrospective illusion of truth
l’illusion rétrospective du vrai

Par le seul fait de s’accomplir, la réalité projette
derrière elle son ombre dans le passé
indéfiniment lointain ; elle parâıt ainsi avoir
préexisté, sous forme de possible, à sa propre
réalisation

[H. Bergson, La pensée et le mouvant, 1934]

also: le mouvement rétrospectif/rétrograde du vrai

11 / 58

Turing the father of CS?

Little influence on actual computers
EDVAC, and not Turing’s ACE is the ancestor of Manchester Mark I

The mathematical theory of computation
is the result of an agenda of the late 50s

Of course someone knew. . .
von Neumann, Goldstine, Curry, Bernays, Gorn, . . .

12 / 58

Prehistory

1947

13 / 58

Goldstine and von Neumann

[. . .] coding [. . .] has to be viewed as a logical problem and one
that represents a new branch of formal logics.

Hermann Goldstine and John von Neumann
Planning and Coding of problems for an Electronic Computing Instrument
Report on the mathematical and logical aspects of an electronic computing instrument,
Part II, Volume 1-3, April 1947. Institute of Advanced Studies.

14 / 58

Boxes in flow diagrams

15 / 58

Goldstine and von Neumann, 2

Boxes in flow diagrams

operation boxes

substitution boxes

assertion boxes

The contents of an assertion box are one or more relations.

An assertion box [. . .] indicates only that certain relations are
automatically fulfilled whenever [the control reaches that point]

Free and bound variables, etc.

16 / 58

Turing

Lecture on Automatic Computing Engine
London Mathematical Soc., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32

High-level languages

17 / 58

Turing

Lecture on Automatic Computing Engine
London Mathematical Soc., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32

High-level languages

In principle one should be able to communicate [with these machines] in
any symbolic logic [. . .].

This would mean that there will be much more practical scope for logical
systems than there has been in the past.

18 / 58

Turing, again: 1949

The programmer should make assertions about the various states
that the machine can reach.

The checker has to verify that [these assertions] agree with the
claims that are made for the routine as a whole.

Finally the checker has to verify that the process comes to an end.
A.M. Turing. Checking a large routine. Paper read on 24 June 1949 at the inaugural conference of the EDSAC
computer at the Mathematical Laboratory, Cambridge.
Discussed by Morris and Jones, Annals of the History of Computing, Vol. 6, Apr. 1984.

19 / 58

Corrado Böhm

Born, 1923
Died, 2017
1946: Dipl Engineering, Lausanne
1947: At ETH, Zürich

sent to Zuse’s lab to evaluate the Z4
1953: Researcher at IAC, Rome
1954: PhD, ETH Zürich (Stiefel, Bernays)

1970: Professor, Turin
1974: Professor, Rome La Sapienza

20 / 58

Böhm:
Universal machines

Calculatrices digitales.
Du d6chiffrage de formules logico-mathOnatiques par la

machine m6me dans la conception du programme.

Mdmoire de CORRADO B~HM (h Roma) (*).

O. - I n t r o d u c t i o n .

0.1. U t i l i t d d' u n e c o d i f i c a t i o n automat ique .
De nos jours on tend de plus en plus it employer les grandes ealeulatr ices

digitales en raison des caract~rist iques suivantes :

0.11. Possibilit~ d ' ex~eute r une succession de caleuls suivant un pro-
g r a m m e fix(f St l ' avance.

0.12. Vilesse de calenl r emarquab lement sup~rieure (de quelques centaines
de fois) St celle des pr~c~dents types de ealculatr ices filectromfieaniques ou
/~ la main.

Ces deux propri~t6s permet tent d'~Itablir une analogie, au point de r u e
de l' organisation et de]' ~iconomie, entre une de ces machines et un bureau
de calcul. De ce mgme point de r u e nous pourrions ~baucher une classification
en trois classes des t ravaux St soumettre St une calculatr ice digitale St pro-
g ramme de la manibre suivante :

A) Caleuls ayant un caract6re d'extr~me urgence et comportant un tr~s
grand hombre de donn6es: p. ex. pr6visions m6t6rfiologiques ou bien dfipouil-
lements de scrutins ~lectoraux.

B) Calculs de grande s6rie comportant un trbs grand hombre d'opfira-
tions qui doivent gtre r6pfit6es plus ieurs fois de suite, comme p. ex. dans
l ' invers ion de matr ices d 'o rd re filevfi.

C} Tous les autres calculs ne pouvant se classifier ni sous A) ni sous B):
p. ex. l ' int~grat ion d ' une ~quation diff~rentielle donnfie, la r6solution d ' u n e
6quation trascendente, etc.

Pour les cat6gories A) et B) la diffieultfi du programme et, en derni~re
analyse, la durde de sa pr6paration ne jouen t pas un grand rSle, puisque la
qualit~i requise pour le programme est celle de permet t re de profi ter au
max imum de la vitesse de calcul. P a r centre, pour la cat~gorie C) le temps
d6pens6 par les personnes charg~es de]a prfiparation et du contr61e du
programme peut gtre beacoup plus grand, d ' u n autre ordre de grandeur

(*) Ricercatore h 1' Istituto Naz. per le Applieazioni del Calcolo. Th~se pr6sent6e
]'Ecole Polylechnique F~d~rule, Zurich, pour l'obtention du grade do I)octeur ~s Sciences
mathdmatiques. :Rap10orteur : Prof. Dr. E. Stiefel; corapporteur: Prof. Dr. P. Bernays (1952).

C. B S ~ : Calculatrices digifalc.~. 1~ ddehif.fragc de fortuities, c~c. 179

des sg~uences de chiffres repr~sentant des nombres connus St l ' avance ou
bien jou issan t de propri~t~s connues.

Son ~tude uti l ise cette d~finition pour at teindre rapidement certains
r~sultats en logique math~matique. Certaines parmi ses conclusions - - que nous
rapportons plus has - - ont aussi un grand inter~t pour une ~ventuelle future
th~orie des caleulatr ices, et elles ont influenc~ les progr~s relat ifs St la pr o.
grammation des calculatr ices dans dans les dix dern.i~res ann~es.

M. TURING a montr~ comment la notion de calculabili t~ m~canique d 'un
nombrc est, au fond, ~quiva!ente ~ la notion d' exis tence de m~thodes g~n~-
rales pour d~terminer ce m~me nombre. I1 a montr~ en outre, St part i r de
l 'hypoth~se qu 'on sache construire des calculatr ices particuli~res pour calculer
des s~quences partieuli~res de hombres, qu ' i l existe une calculatr ice dire
ur~iverselle qui joui t de la propri~t~ su ivan te : si l 'on pourvoit la calculatr ice
universel le de la description ([ormalis~e conventionnellement} du fonctionne-
meat de vhaque calculatr ice partieuli~re, la premiere est St m~me de simuler
le comportement de la seeonde, c. St d. de calculer St sa place.

Nous voulons a d m e t t r e - ce qui est assez p l a u s i b l e - que les calcu-
latrices les plus ~volu~es sont universelles, au sens sp~cifi~ par M. TURING.
Ceci nous permet alors de formuler les deux hypotheses de travail suivantes,
auxquel les nous aurons souvent recours par la sui te :

0.31. Les calculatr ices St programme de la categoric 0.23 sont, au point
de r u e logico-math~matique, ~quivalentes entre elles.

Cette hypoth~se nous permet de borner notre ~tude St un seul type de
calculatr ice, p. ex. une calculatr ice St trois adresses, sans crainte de r ien
perdre en g~n~ralit~.

0.32. Le ,~ programme >~ est susceptible, par rappor t aux ealculatr iees
universelles, d 'une double interpretat ion. La premiere es t : << Descript ion d 'un
comportement de la calculatr ice >>. La deuxi~me : << Descript ion d 'une m~thode
num~rique de caleul >>.

Cette hypoth~se n' est qu' une nouvel le formulat ion de l ' id~e de TuR~N~
et jus t i f ie la recherche d ' u n formalisme apte St met t re cette id le pleine-
ment en ~vidence.

0.4. R~sumd.
Nous ddcrivons tout d ' abord (GHAP. 1} la s t ructure et l 'o rganisa t ion

d ' u n e calculatr ice du type de celles ddjst construites. Nous pouvons ainsi
ddfinir expl ic i tement un programme cycl ique fondamental t raduisant en
termes de cette machine la ddfinition de << programme >> (v. 0.32), avant mgme
de spdcifier quelles doivent gtre les instruct ions codifides. Ge dernier choix
dtant fair, nous ddmontrons l 'universali td d e cette ealculatr ice et introduisons
quelques instruct ions suppldmentaires ut i les dans la suite. Apr~s gtre
passd de la notation habituel le des programmes St une autre notation

Calculatrices digitales.
Du d6chiffrage de formules logico-mathOnatiques par la

machine m6me dans la conception du programme.

Mdmoire de CORRADO B~HM (h Roma) (*).

O. - I n t r o d u c t i o n .

0.1. U t i l i t d d' u n e c o d i f i c a t i o n automat ique .
De nos jours on tend de plus en plus it employer les grandes ealeulatr ices

digitales en raison des caract~rist iques suivantes :

0.11. Possibilit~ d ' ex~eute r une succession de caleuls suivant un pro-
g r a m m e fix(f St l ' avance.

0.12. Vilesse de calenl r emarquab lement sup~rieure (de quelques centaines
de fois) St celle des pr~c~dents types de ealculatr ices filectromfieaniques ou
/~ la main.

Ces deux propri~t6s permet tent d'~Itablir une analogie, au point de r u e
de l' organisation et de]' ~iconomie, entre une de ces machines et un bureau
de calcul. De ce mgme point de r u e nous pourrions ~baucher une classification
en trois classes des t ravaux St soumettre St une calculatr ice digitale St pro-
g ramme de la manibre suivante :

A) Caleuls ayant un caract6re d'extr~me urgence et comportant un tr~s
grand hombre de donn6es: p. ex. pr6visions m6t6rfiologiques ou bien dfipouil-
lements de scrutins ~lectoraux.

B) Calculs de grande s6rie comportant un trbs grand hombre d'opfira-
tions qui doivent gtre r6pfit6es plus ieurs fois de suite, comme p. ex. dans
l ' invers ion de matr ices d 'o rd re filevfi.

C} Tous les autres calculs ne pouvant se classifier ni sous A) ni sous B):
p. ex. l ' int~grat ion d ' une ~quation diff~rentielle donnfie, la r6solution d ' u n e
6quation trascendente, etc.

Pour les cat6gories A) et B) la diffieultfi du programme et, en derni~re
analyse, la durde de sa pr6paration ne jouen t pas un grand rSle, puisque la
qualit~i requise pour le programme est celle de permet t re de profi ter au
max imum de la vitesse de calcul. P a r centre, pour la cat~gorie C) le temps
d6pens6 par les personnes charg~es de]a prfiparation et du contr61e du
programme peut gtre beacoup plus grand, d ' u n autre ordre de grandeur

(*) Ricercatore h 1' Istituto Naz. per le Applieazioni del Calcolo. Th~se pr6sent6e
]'Ecole Polylechnique F~d~rule, Zurich, pour l'obtention du grade do I)octeur ~s Sciences
mathdmatiques. :Rap10orteur : Prof. Dr. E. Stiefel; corapporteur: Prof. Dr. P. Bernays (1952).

21 / 58

However,

Programming in the fifties (and later. . .) was a different story. . .

22 / 58

Knuth’s recollection, circa 1962

23 / 58

Knuth’s recollection, circa 1962

I had never heard of “computer science”

The accepted methodology for program
construction was [. . .]: People would write
code and make test runs, then find bugs
and make patches, then find more bugs and
make more patches, and so on.

We never realized that there might be a
way to construct a rigorous proof of validity
[. . .] even though I was doing nothing but
proofs when I was in a classroom
[D.K. Knuth, Robert W. Floyd, in memoriam. ACM SIGACT News 2003]

24 / 58

Knuth’s recollection, circa 1962

The early treatises of Goldstine and von
Neumann, which provided a glimpse of
mathematical program development, had
long been forgotten.

25 / 58

Donald E. Knuth

Born, 1938
Bachelor and Master of science:

Physics, Mathematics, 1960
PhD Mathematics, 1963
Stanford University, since 1968
The Art of Computer Programming: 1968 - today
Turing Award, 1974 (he was 36. . .)

Sorry Mau:

when you’ll get the Turing Award, you’ll be at least 60. . .

26 / 58

Donald E. Knuth

Born, 1938
Bachelor and Master of science:

Physics, Mathematics, 1960
PhD Mathematics, 1963
Stanford University, since 1968
The Art of Computer Programming: 1968 - today
Turing Award, 1974 (he was 36. . .)

Sorry Mau:

when you’ll get the Turing Award, you’ll be at least 60. . .

27 / 58

A Mathematical Theory of Computation

It is reasonable to hope that the
relationship between computation and
mathematical logic will be as fruitful in the
next century as that between analysis and
physics in the last.

John McCarthy, MIT 1961; Stanford 1963

From the conclusion of the final version of the paper (1963): A Basis for a
Mathematical Theory of Computation. 1961: the Western Joint Computer
Conference; 1962: IBM symposium in Blaricum, Netherlands; 1963: in
Computer Programming and Formal Systems, North Holland.

28 / 58

A Mathematical Theory of Computation

It is reasonable to hope that the
relationship between computation and
mathematical logic will be as fruitful in the
next century as that between analysis and
physics in the last.

John McCarthy, MIT 1961; Stanford 1963

From the conclusion of the final version of the paper (1963): A Basis for a
Mathematical Theory of Computation. 1961: the Western Joint Computer
Conference; 1962: IBM symposium in Blaricum, Netherlands; 1963: in
Computer Programming and Formal Systems, North Holland.

29 / 58

John McCarthy

Born, 1927
Died, 2011

Bachelor of science: Mathematics, 1942
PhD Mathematics, 1951
MIT, 1956–1962
Stanford University, since 1968
Turing Award, 1971

Artificial intelligence
Lisp

30 / 58

A basis for a Mathematical Theory of Computation

Expected practical results:

1 To develop a universal programming language

2 To define a theory of the equivalence of computation processes

3 To represent algorithms by symbolic expressions [...]

4 To represent computers as well as computations in a
formalism that permits a treatment of the relation between a
computation and the computer that carries out the
computation

5 To give a quantitative theory of computation.

31 / 58

We hope that the reader will not be angry about the contrast
between the great expectations of a mathematical theory of
computation and the meager results presented in this paper.

32 / 58

Contents

a class of recursively computable functions

based on arbitrary domains of data and operations on them

with conditional expressions

functionals

a general theory of datatypes

recursion induction to prove equivalences

33 / 58

Program correctness

Towards a Mathematical Science of Computation, IFIP 1962

1 To define programming languages
At present, programming languages are constructed in a very
unsystematic way. [. . .] A better understanding of the
structure of computations and of data spaces will make it
easier to see what features are really desirable.

2 To eliminate debugging.
Instead of debugging a program, one should prove that it
meets its specifications, and this proof should be checked by a
computer program. For this to be possible, formal systems are
required in which it is easy to write proofs.

34 / 58

Program correctness

Towards a Mathematical Science of Computation, IFIP 1962

1 To define programming languages
At present, programming languages are constructed in a very
unsystematic way. [. . .] A better understanding of the
structure of computations and of data spaces will make it
easier to see what features are really desirable.

2 To eliminate debugging.
Instead of debugging a program, one should prove that it
meets its specifications, and this proof should be checked by a
computer program. For this to be possible, formal systems are
required in which it is easy to write proofs.

35 / 58

Contents

1 Recursion induction to prove properties of Algol programs:
a program is understood as a representative for its meaning:
argue on the program for obtaining results on its model

2 Abstract syntax of programming languages

3 Semantics: the meaning of program is defined by its effect on
the state vector.

36 / 58

R. Floyd

An adequate basis for formal definitions of
the meanings of programs [. . .] in such a
way that a rigorous standard is established
for proofs about computer programs

Based on ideas of Perlis and Gorn

That semantics of a programming language
may be defined independently of all
processors [. . .] appear[s] to be new,

although McCarthy has done similar work
for programming languages based on
evaluation of recursive functions.
Robert W. Floyd. Assigning meaning to programs. Mathematical Aspects

of Computer Science, AMS 1967.

37 / 58

R. Floyd

An adequate basis for formal definitions of
the meanings of programs [. . .] in such a
way that a rigorous standard is established
for proofs about computer programs

Based on ideas of Perlis and Gorn

That semantics of a programming language
may be defined independently of all
processors [. . .] appear[s] to be new,

although McCarthy has done similar work
for programming languages based on
evaluation of recursive functions.
Robert W. Floyd. Assigning meaning to programs. Mathematical Aspects

of Computer Science, AMS 1967.

38 / 58

Robert W. Floyd

Born, 1936
Died, 2001

Bachelor in liberal arts: 1953 (he was 17)
Bachelor in physics: 1958
No PhD
Computer programmer
Carnegie Mellon University, 1965–1968
Stanford University, since 1968
Turing Award, 1978

Grammars
Programming language semantics

39 / 58

Our giant founding fathers:

Alan Turing

John von Neumann

Corrado Böhm

John McCarthy

Bob Floyd

Tony Hoare

Peter Landin

Christopher Strachey

and the many many others...

There is a common theme in their (very different!) approaches. . .

40 / 58

Our giant founding fathers:

Alan Turing

John von Neumann

Corrado Böhm

John McCarthy

Bob Floyd

Tony Hoare

Peter Landin

Christopher Strachey

and the many many others...

There is a common theme in their (very different!) approaches. . .

41 / 58

The standard model

True arithmetic and (in principle) unbounded resources

Proof methods applied directly to programs without first
transforming them into their semantic equivalent [McCarthy 1962]

42 / 58

The standard model

True arithmetic and (in principle) unbounded resources

Proof methods applied directly to programs without first
transforming them into their semantic equivalent [McCarthy 1962]

43 / 58

The standard model

Three features:

compositionality

extensionality

referential transparency

44 / 58

C.A.R. Hoare

Computer programming is an exact science in that all the
properties of a program and all the consequences of executing it in
any given environment can, in principle, be found out from the text
of the program itself by means of purely deductive reasoning.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM 12(10), 1969.

45 / 58

Charles Anthony R. (Tony) Hoare

Born, 1934

Classics and philosophy: 1956
Statistics, Computer programmer: 1956-1968

Queen’s University of Belfast, 1968–1977
Oxford University, since 1977
Turing Award, 1980
FRS

Algorithms (QuickSort), concurrency
Definition and design of programming languages

46 / 58

Computer programming is an exact science. . .

47 / 58

Resistances

Most scientists thought that using a computer was simply
programming — that it didn’t involve any deep scientific thought
and that anyone could learn to program. So why have a degree?
They thought computers were vocational vs. scientific in nature.

[Conte, Computerworld magazines, 1999]

48 / 58

Computer Science Dpts

1962 Purdue University (West Lafayette, IN): first dpt of CS;
Samuel D. Conte (Perlis: 1951-1956@computation center)

1965 Stanford University (Palo Alto, CA); George Forsythe
(Herriot, McCarthy, Feigenbaum, Wirth, Knuth(later))
Since 1961 it was a “division” of Math Dpt.

1965 Carnegie Mellon University (Pittsburg, PA); Alan J. Perlis
(Allen, Simon)

1965 First PhD given by a CS Dpt: Richard Wexelblat @ University
of Pennsylvania (ENIAC!)

1971 Yale (New Haven, CT); Perlis

49 / 58

A mathematical theory is the entrance ticket to science

50 / 58

The grand view

Structural engineering

mathematical physics laws

empirical knowledge

to understand, predict, and calculate the stability, strength and
rigidity of structures for buildings.

McCarthy:

the relationship between computation and mathematical logic will
be as fruitful as that between analysis and physics.

51 / 58

C.A.R. Hoare

When the correctness of a program, its compiler, and the hardware
of the computer have all been established with mathematical
certainty, it will be possible to place great reliance on the results of
the program, and predict their properties with a confidence limited
only by the reliability of the electronics.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM 12(10), 1969.

52 / 58

Hierarchy of machines

‘

All levels are of the same (abstract) nature

All levels could be subject (at least conceptually) to the same
analysis.

A formally proved chain of compilers:
a proof that a model of the hight level program satisfies a
condition,
transfers to a proof that a model of the low level program
satisfies a certain condition (automatically obtained from the
other)

No concrete, iron, workmanship is involved.

53 / 58

The standard model

True arithmetic and (in principle) unbounded resources

The standard model is to PL
what movement without friction is to mechanics

54 / 58

The standard model

True arithmetic and (in principle) unbounded resources

The standard model is to PL
what movement without friction is to mechanics

55 / 58

The standard model

Ontological interpretation

Contrary to some mechanistic interpretation
(Piccinini, but also some Dijkstra):

a program denotes

a program talks about the world

a program acts on the object of the world

And then an ethical responsability. . .

56 / 58

The standard model

Ontological interpretation

Contrary to some mechanistic interpretation
(Piccinini, but also some Dijkstra):

a program denotes

a program talks about the world

a program acts on the object of the world

And then an ethical responsability. . .

57 / 58

Il collega

	
Happy birthday, Maurizio!

58 / 58

