
Adaptive Real Time IoT Stream Processing
in Microservices Architectures

Luca Bixio
Stefano Rebora
Matteo Rulli

Giorgio Delzanno

DIP 2020
27 November 2020

Why this talk?

Adaptive Real Time IoT Stream Processing
in Microservices Architectures

Luca Bixio
Stefano Rebora
Matteo Rulli

Giorgio Delzanno

DIP 2020
27 November 2020

... somehow related to Maurizio’s Cubist period
(Service Oriented Computing, Choreographies, …)

... somehow related to Maurizio’s Cubist period
(Service Oriented Computing, Choreographies, …)

cubism, where the forms and figures were decomposed to
be "tested" in parts

From Cubism to the Microservices Cube-scale Model

Background
and
Problem Statement

IoT and Big Data

8

Wide variety of smart devices

Source of large volumes of data
at an unprecedented speed

The value diminishes very fast with time

Real Time Stream processing

9

Continuous and potentially unbounded sequences of data elements (data streams)
from which static queries (a.k.a. rules) continuously extract information in a very

short time span (milliseconds or seconds)

IoT platforms + Real Time Stream
processing

10

An IoT platform provides tools, technologies and capabilities for simplifying the
development, provisioning and management of IoT applications

Real Time Stream processing in IoT application scenarios

§ Anomaly and fraud detection
§ Remote Monitoring
§ Predictive Maintenance

§ Real-time analytics (Sentiment analysis, Sports
analytics, etc.)

§ Data quality assessment (Data cleaning, Data
profiling to discover inconsistencies and
anomalies in the data, etc.)

Problem Statement

11

When Integrating real-time stream
processing capabilities in IoT platforms

I. Twofold level of applicability
Edge level and cloud/core level

II. Technological pluralism
Different stream processing engines to be handled

III. Rules’ dynamicity
Rules follow a dynamic lifecycle

Our Proposal
Microservices architecture for an IoT platform able to offer

12

Applying real time stream processing
both on edge- and core-level

Defining rules independently from the
underlying stream processing engines

Handling stream processing rules as
dynamically allocable, composable and
relocatable resources

Adaptivity and Flexibility Dynamicity

Portable rules model

Hybrid Cloud Approach

Microservices based on

Java OSGi

Remarks

13

Innovative aspect Why Microservices?

› Usually, IoT platforms offer a
rich language or library for
defining stream processing
rules

› Our proposal restricts the
query language to a
predefined set of rule
templates in favor of a much
more flexible and dynamic
deployment model

› Microservices are now the de
facto standard adopted for
implementing any software
platform

› Senseioty platform by FlairBit

› Microservices offer an
interesting level of flexibility
and dynamicity

What are Microservices?

14

Monolithic Architecture Microservices Architecture

Main features

Functionalities are implemented as independent and autonomous services

Services are loosely coupled, replaceable and composable

Services are independently deployable and scalable

Data management and communication mechanisms are completely decentralized

15

What is OSGi?

16

“OSGi technology is a set of specifications that define a
dynamic component system for Java”

By OSGi Alliance

The OSGi technology is composed by two important parts

I. The OSGi framework
A collaborative software environment, where applications are composed of several
components packaged in modules, called bundles

II. The OSGI standard services
They offers some reusable common APIs (e.g. Logging service)

Module layer

17

A bundle is a standard JAR file enriched by
some metadata contained in a manifest Manifest-Version: 1.0

Created-By: 1.2 (Oracle)
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.api
BundleVersion: 1.0.0.SNAPSHOT
Bundle-Name: Simple API
Export-Package: org.foo.api
Import-Package: javax.swing,org.foo.api
Bundle-License: http://www.example.org
Bundle-ClassPath: .,other-classes/,embedded.jar

It defines the concept of bundle and how a bundle can import and export code

Module layer

18

A bundle is a standard JAR file enriched by
some metadata contained in a manifest Manifest-Version: 1.0

Created-By: 1.2 (Oracle)
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.api
BundleVersion: 1.0.0.SNAPSHOT
Bundle-Name: Simple API
Export-Package: org.foo.api
Import-Package: javax.swing,org.foo.api
Bundle-License: http://www.example.org
Bundle-ClassPath: .,other-classes/,embedded.jar

It defines the concept of bundle and how a bundle can import and export code

Code-visibility metadata:

- Internal bundle class path: the code forming the bundle
(Bundle ClassPath header)

- Exported internal code: explicitly exposed code from the
bundle class path for sharing with other bundles (Export-
Package header)

- Imported external code: external code on which the bundle
class path code depends (Import-Package header)

Life-cycle layer

19

It defines the bundle life-cycle operations and how bundles gain access to
their execution context

Life-cycle layer

20

It defines the bundle life-cycle operations and how bundles gain access to
their execution context

installed à resolved:
automated dependency resolution

update à refresh:
Update code and then refresh dependencies
of all involved bundles

Service layer

21

A service consists in a Plain Old Java Objects
(POJOs) that is registered under one or more
Java interfaces with the OSGi service registry

• Less coupling between the provider and
consumer

• Support for multiple and interchangeable
implementations

• Clear highlighting of dependencies
• More emphasis on interfaces

Dynamic collaborative model, where bundles communicate locally through services

22

Remote Services

• Very flexible. Services are exported
independently from the communication
protocols

• Use of intents and configurations

• The distribution provider bundles transparently
manages the remote communication

Set of service properties that can be attached to OSGi services in order to indicate
that they should be made available remotely

23

OSGi and Microservices
OSGi is able to enforce and enrich some properties of the microservices architecture

Flexible granularity of service level
Combination of microservices and nanoservices

Built-in dynamic nature
Dynamicity-aware microservices

Flexibility with respect to service decomposition
OSGi Remote Services offers a flexible approach
for defining the microservices boundaries

Designed for the Java Platform

OSGi is the perfect booster for
those dynamic and flexible
features that we were looking for

Reference Architecture

Goals
Integrating real time stream processing capabilities in an IoT platform offering

25

• Adaptivity and Flexibility in a Hybrid Cloud Approach
• Stream processing rules as resources
• Portable rules model

The result is a microservices architecture where these functionalities are offered as a
RESTful API

• Installing and uninstalling rules
• Starting and stopping the execution of rules
• Moving the rule execution between different runtimes

Proposed Architecture

26

Proposed Architecture

27

Entry point of the
architecture offering

the RESTful API

Proposed Architecture

28

It translates the information
received from the proxy

μ-service into actual
executable rules

Proposed Architecture

29

Native code templates
implementing a specific

rule type

Proposed Architecture

30

A
Microservice integrating a

lightweight stream
processing engine

B
Job submission on a

scalable stream processing
engine

Proposed Architecture

31

Two pub/sub brokers for
rule composability

1

2

The proxy μ-service

32

URL Method Request Body Response Body

/api/install POST JSON installation object JSON jobinfo object

/api/uninstall POST JSON jobinfo object JSON jobinfo object

/api/start POST JSON jobinfo object JSON jobinfo object

/api/stop POST JSON jobinfo object JSON jobinfo object

/api/move POST JSON relocation object JSON jobinfo object

// JSON INSTALLATION OBJECT
{

"headers":{
"runtime":<ENGINE>,
"targetResource":<URL>,
"jobType":<JOB_TYPE>

},
"jobConfig":{

"connectors":{
"inputEndpoint":<STRING>,
"outputEndpoint":<STRING>

},
"jobProps":{

"condition":< ">" | ">=" | "="
| "<" | "<=" >,

"threshold":< INT | FLOAT
| DOUBLE | STRING >,

"fieldName":<STRING>,
"fieldJsonPath":<JSON_PATH>

}
}

}

// JSON JOBINFO OBJECT
{

"runtime":<ENGINE>,
"jobId":<STRING>,
"jobType":<JOB_TYPE>,

"jobStatus":<INSTALLED|RUNNING|STOPPED|UNINSTALLED>,
"configFileName":<STRING>

}

// JSON RELOCATION OBJECT
{

"target_runtime":<ENGINE>,
"targetResource":<URL>,
"jobInfo":<JSON_JOBINFO_OBJECT>

}

Rules’ expressive power

33

Ideally, we would like to support any kind of rule expressible with a standard query stream
language (e.g. Stanford CQL)

In practice, it is extremely complicated. It requires to implement a query compiler able to
validate an arbitrary query and to compile and translate it to the model or language of
the underlying stream processing engines

Our solution

34

Providing the expressive power for supporting the rules most commonly used in IoT scenarios

Set of predefined and composable templates

› Filtering query
SELECT * FROM inputEvents WHERE field > threshold

› Aggregation query over a window
SELECT SUM(field) FROM inputEvents[5 s]

› Joining query between two streams over windows
SELECT field1 field2 FROM stream1[1 m] JOIN
stream2[1 m] ON stream1.field3 = stream2.field

› Composability using
pub-sub brokers

Prototype implementation

35

Result of an internship experience with FlairBit

• Technology exploration phase

• Technology selection phase
Siddhi and Apache Flink

• Prototype implementation phase
Preliminary implementation and
PoC for extending Senseioty

Prototype
overview

36

What about other IoT platforms?

37

Google Cloud IoT with Apache Beam SDK
Unified development model for defining
and executing data processing pipelines

Azure Stream Analytics on IoT Edge
Azure Stream Analytics jobs executed on
edge devices

AWS IoT Greengrass
AWS Lambda locally executed
on edge devices

More expressive power

Bound to one stream
processing engine

No dynamic allocation and
relocation back and forth
between the edge-level
and cloud-level

Support of several
engines

No edge analytics

Future works

38

• Investigating possible solutions for simplifying the rules’ definition

• Integrating in the architecture the monitoring μ-service introduced by the
smart industry example

• Improving the prototype implementation

• Applying in the prototype the data access policies offered by Senseioty

