Adaptive Real Time loT Stream Processing
in Microservices Architectures

DIP 2020
27 November 2020

Luca Bixio o
Stefano Rebora Giorgio Delzanno

Matteo Rulli

P Dibris

oooooooooooooooooooo
UNIVERSITA DEGLI STUDI
DI GENOVA

Why this talk?

An excuse for greetings from
Giovanna, Davide, Elena, Alessandro, ...

... but also ...

.. somehow related to Maurizio’s Cubist period
(Service Oriented Computing, Choreographies, ...)

.. somehow related to Maurizio's Cubist period
(Service Oriented Computing, Choreographies, ...)

From Cubism to the Microservices Cube-scale Model

Microservices

Y-axis scaling,
ak.a. functional
decomposition
Scale by splitting
things that are
different, such as
by function.

Monolith

instance

........

Many
partitions

Z-axis scaling,

/.k.a. data partitioning

One

X-axis scaling,
a.k.a. honzontal duplication

Scale by dloning

One

instances

Scale by splitting
similar things, such as
by customer ID.

Background
and
Problem Statement

loT and Big Data

Q Wide variety of smart devices

n Source of large volumes of data

at an unprecedented speed

The value diminishes very fast with time

Real Time Stream processing

Continuous and potentially unbounded sequences of data elements (data streams)
from which static queries (a.k.a. rules) continuously extract information in a very
short time span (milliseconds or seconds)

| %

Streams

| %

Results

Queries / Rules

loT platforms + Real Time Stream
processing

An |oT platform provides tools, technologies and capabilities for simplifying the
development, provisioning and management of loT applications

Real Time Stream processing in loT application scenarios

= Anomaly and fraud detection = Real-time analytics (Sentiment analysis, Sports
= Remote Monitoring analytics, etc.)
= Predictive Maintenance = Data quality assessment (Data cleaning, Data

profiling to discover inconsistencies and
anomalies in the data, etc.)

10

B

Problem Statement

When Integrating real-time stream Application/Presentation
. o] e . . ayer
processing capabilities in 10T platforms |
l. Twofold level of applicability cloud/Core
Edge level and cloud/core level Layer
. . 4
Il. Technological pluralism
Different stream processing engines to be handled Edge Layer

lll. Rules’ dynamicity
Rules follow a dynamic lifecycle

Sensors |/ Actuators
Layer

Our Proposal

Microservices architecture for an loT platform able to offer

Adaptivity and Flexibility Dynamicity

Applying real time stream processing

both on edge- and core-level
Hybrid Cloud Approach

Handling stream processing rules as
dynamically allocable, composable and

relocatable resources

~_~

"

-
N

Portable rules model

Defining rules independently from the
underlying stream processing engines

Remarks

@ Innovative aspect @ Why Microservices?

» Usually, 10T platforms offer a » Microservices are now the de
rich language or library for facto standard adopted for
defining stream processing implementing any software
rules platform

» Our proposal restricts the » Senseioty platform by FlairBit

qguery language to a
predefined set of rule
templates in favor of a much
more flexible and dynamic
deployment model

» Microservices offer an
interesting level of flexibility
and dynamicity

What are Microservices?

MYSQL
ADAPTER

REST

API
Passengers

management

Billing . . Payments
Notification

WEB

ul Trip Driver

Management management

STRIPE
ADAPTER

Monolithic Architecture

Monolithic
Architecture

\

ADAPTER

~

TWILIO

J

P\

SENDGRID

ADAPTER

API
GATEWAY

Passengers Billing

management

Payments

Driver

Passengers
management

Web Ul

Driver
Web UI

Microservices Architecture

Notification |SENDGRID

Trip
Management

P -

Main features

Functionalities are implemented as independent and autonomous services
Services are loosely coupled, replaceable and composable

Services are independently deployable and scalable

Data management and communication mechanisms are completely decentralized

What is OSGi?

“OSGi technology is a set of specifications that define a
dynamic component system for Java”

By OSGi Alliance

The OSGi technology is composed by two important parts

. The OSGi framework

A collaborative software environment, where applications are composed of several
components packaged in modules, called bundles

Il. The OSGI standard services
They offers some reusable common APIs (e.g. Logging service)

Module layer

It defines the concept of bundle and how a bundle can import and export code

A bundle is a standard JAR file enriched by
some metadata contained in a manifest

Xm

Jpg Manifest.mf .class
etc.

Resource files Metadata Class files

Bundle

Manifest-Version: 1.0

Created-By: 1.2 (Oracle)
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.api
BundleVersion: 1.0.0.SNAPSHOT
Bundle-Name: Simple API

Export-Package: org.foo.api
Import-Package: javax.swing,org.foo.api
Bundle-License: http://www.example.org

Bundle-ClassPath: .,other-classes/,embedded.jar

Module layer

It defines the concept of bundle an

A bundle is a standard JAR file enriched b
some metadata contained in a manifest

LT
ipg Manifest. mf class
etc.

Resource files Metadata Class files

J
-

Life-cycle layer

It defines the bundle life-cycle operations and how bundles gain access to

their execution context
Install
| Update

Refresh
— | installed < | starting
" 4 Refresh .
Resolve l T Update Start l
Uninstall i Active :
(Resolved ‘
lStop

() (e)
_ O

P -

Life-cycle layer

It defines the bundle life-cycle operations and how bundles gain access to
their execution context

Update

Uninstall

Service layer

Dynamic collaborative model, where bundles communicate locally through services

A service consists in a Plain Old Java Objects
(POJOs) that is registered under one or more
Java interfaces with the OSGi service registry

* Less coupling between the provider and
consumer

e Support for multiple and interchangeable
implementations

* Clear highlighting of dependencies

 More emphasis on interfaces

0OSGi Framework

Bundle

Find Bundle
Publish { OSGI \

Bundle —)(Service
eglstry

Find Bundle

j **L

Bundle

Remote Services

Set of service properties that can be attached to OSGi services in order to indicate

that they should be made available remotely

» Very flexible. Services are exported
independently from the communication
protocols

Use of intents and configurations

The distribution provider bundles transparently
manages the remote communication

| Client VM

OSGi Registry

Service-provider ’

' Endpoint |

|
3 |
>

Server VM

OSGi Registry

A

proxy]

£ ™\

Distribution provider ’7 « > —-—{ Distribution provider

Announcement

; Service provider

£ ™

N s

OSGi and Microservices

OSGi is able to enforce and enrich some properties of the microservices architecture

Flexible granularity of service level ° Designed for the Java Platform
Combination of microservices and nanoservices

Built-in dynamic nature

Dynamicity-aware microservices OSGi is the perfect booster for
those dynamic and flexible

Flexibility with respect to service decomposition ,
features that we were looking for

OSGi Remote Services offers a flexible approach
for defining the microservices boundaries

Reference Architecture

Goals

Integrating real time stream processing capabilities in an loT platform offering

e Adaptivity and Flexibility in a Hybrid Cloud Approach
e Stream processing rules as resources
e Portable rules model

The result is @ microservices architecture where these functionalities are offered as a
RESTful API

* Installing and uninstalling rules
 Starting and stopping the execution of rules
* Moving the rule execution between different runtimes

Proposed Architecture

&)

Lightweight real-time data
processing p-service

Scalable real-time

processing system Core Pub/Sub
26

P -

Devices/ ! Gateways / Edge E Core Analvti : . o)
Sensors | Analytics ; ore Analytics i Client Applications / client
: E 5 u-Services

5 Lightweigh_t real-time_ data E Rule templates repository |
; processing p-service ; ’
Liiil E - - E E
- = - ' ' '
1 IMF ' Dynamic p-service '
; allocation ; Adapter f
N ' : ' p-service .
E : Gateway 1 : :
— E N - - - E— — : ."
' Edge Pub/Sub PR S | :
[RREN ' I - ' ==
N " ' ' ' '
- 5 - ' Proxy p-service ;
) ...ﬁ - ; Dynamic p-service Dynarr_ucgob :
: allocation : submission
LiLLl E 1 E 1
- = - ' ; H
TITTT E - -7 E '

Devices / Gateways / Edge
Sensors ! Analytics E
.................. ESUUUUUUUUUUUUUUUUUUURUIRRRRRRRRES IESERRSIRNRRRRMRRIINIIE |\t pOiNt of the

Lightweight real-time data ! architecture offering

' rocessin -Service !
| ’ ot ; the RESTful API

Lilll E ¢ * N E
{—(F o
2 mlu - Dynamic p-service :
alloclation
' ' ‘
Gateway '

i;@ff

s e

Edge Pub/Sub

Liiil I
- ,E‘_ - "
- - 1 1 Proxy p-service
= - . in i
e Dynamic p-service Dynamic job
allocation submission

Liill 1
- - 1
- 23 - 1
i * -7
Lightweight real-time data
processing p-service . Scalable real-time

S - T

processing system Core Pub/Sub
27

P -

Proposed Architecture

Devices/ | Gateways / Edge E Core Analvti i) o)
Sensors | Analytics 5 ore Analytics : Client Applications / client
; 5 M-Services
------------------ : : T
: It translates the information _ :
1 . Rule templates repository E
; received from the proxy ;
: Li-service into actual 5
Ll ' -
- _(E ! executable rules :
i NE 5
e ::r' allocalit Adapter .
§:<§}—o Gateway ' ;
— : , N - - :— = : <.
Edge Pub/Sub % Oﬁ ' s
1Ll E l'----i- E T
- - ' 1 ' :
=L N - ' Proxy p-service '
e . - Dynamic p-service Dynan)lc;ob :
: ’}> allocation : submission
Liill E < 5 :
IS F— Gateway ; :
Lightweight real-time data : :
' processing p-service Scalable real-time -

processing system Core Pub/Sub
28

P -

Proposed Architect

Native code templates

Gateway

Devices/ | Gateways / Edge E Core Analytics implementing a specific
Sensors ! Analytics E rule type
Lightweight real-time data E Rule templaes repository
; processing p-service
11011 E ¢ (' N i
: - ' :
- —(= ! ' :
- -I- -y ' Dynamic p-service
allocation Adapter
; X ; p-service
1 1

i%}

Q

o

: Edge Pub/Sub SR S|
LiLll |] '
— — ’ 1 '
E = E— 1 Proxy p-service
) TTTTY - E Dynamic'u-sewice E Dynanpc !Ob
; allocation : submission
RREN| E 1 E
- - - 1 .
- 26‘ — H 1 :
TTTTY E - -7 E
Lightweight real-time data
' processing p-service . Scalable real-time

processing system Core Pub/Sub
29

P -

Microservice integrating a
lightweight stream
processing engine

A

LiLLl

LLLLL

LALLL

LALLl

- Dynamic y-service
allocation
]

T

Proposed Architecture

ways / Edge

Core Analytics Client Applications / client

H-Services

| .

Lightweight real-time data

! ’ Rule templates repository
processing p-service

e

[rmmmmmmm s

Gateway l\
Edge Pub/Sub -t - - B :
X Job submission on a
: scalable stream processing

Dynamic job
submission e ngi ne

Scalable real-time l

processing system Core Pub/Sub
30

P -

Dynamic y-service
allocation

Lightweight real-time data
processing p-service

Proposed Architecture

Two pub/sub brokers for
rule composability

eight real-time data
pcessing p-service Scalable real-time

processing system Coré
31

P -

Devices/ ! Gateways / Edge E c Analvti 5 . L .
Sensors | Analytics ; ore Analytics i Client Applications / client
; : 5 M-Services

Lightweight real-time data Rule templates repository :
; processing p-service ; E
Liill E € - E E
- (e ! : :
: - | ' : : m
3 ...I.. o : Dynamic p-service ! !
allocation Adapter '
; : : p-service E
@ Gateway 1 ! : E
S 0, o 0,) ST
E Edge Pub/Sub Rl bl ° E B
'] :
E} ' Proxy p-service '
¢ : Dynamic p-service Dynan)lc;ob '
allocation submission

The proxy p-service

Method Request Body Response Body
// JSON INSTALLATION OBJECT
/api/install POST JSON installation object JSON jobinfo object {
- o . o . "headers":{
/api/uninstall POST JSON jobinfo object JSON jobinfo object "runtime" : <ENGINE>,
"targetResource" :<URL>,
/api/start POST JSON jobinfo object JSON jobinfo object "jobType" :<JOB_TYPE>
}s
/api/stop POST JSON jobinfo object JSON jobinfo object "jobConfig":{
"connectors":{

/api/move POST JSON relocation object JSON jobinfo object "inputEndpoint" :<STRING>,
"outputEndpoint” :<STRING>

}s

{ .) . llconditionll:< Il>ll | ll>=ll | ll=ll
r‘untlme :<ENGINE>, | ll<ll | ||<_|| >
"jobId":<STRING>, . . -7
"SobType" : <JOB_TYPE>, threshold":< INT | FLOAT

"jobStatus" :<INSTALLED|RUNNING |STOPPED|UNINSTALLED>, | DOUBLE | STRING >,

"configFileName" : <STRING> "fieldName" :<STRING>,

} "fieldJsonPath":<JSON_PATH>

// JSON RELOCATION OBIJECT } }

{
"target_runtime" :<ENGINE>, }
"targetResource" :<URL>,
"jobInfo" :<JSON_JOBINFO_OBJECT>

}

Rules’ expressive power

|deally, we would like to support any kind of rule expressible with a standard query stream
language (e.g. Stanford CQL)

In practice, it is extremely complicated. It requires to implement a query compiler able to
validate an arbitrary query and to compile and translate it to the model or language of

the underlying stream processing engines

Our solution

Providing the expressive power for supporting the rules most commonly used in loT scenarios

@ Set of predefined and composable templates

» Filtering query
SELECT * FROM inputEvents WHERE field > threshold

» Aggregation query over a window
SELECT SUM(field) FROM inputEvents[5 s]

» Joining query between two streams over windows
SELECT fieldl field2 FROM streaml[1 m] JOIN
stream2[1 m] ON streaml.field3 = stream2.field

» Composability using e

Edge Pub/Sub Pre-filtering Core Pub/Sub Aggregation rule Core Pub/Sub
rule

34

P -

Prototype implementation

Result of an internship experience with FlairBit

Technology exploration phase 6
APls Data Ingestion . E::‘p/a? aatti?m
PubISub /‘w ~ "]
Technology selection phase @ cassandra Distributed Wy
. . . i ’_/
Siddhi and Apache Flink HADOOP :t SENSEIOTY : el
RDBMS Q'E Edge-ware
Q Distributed

&
N

Analytics

&
i!’gfx)

Prototype implementation phase i
Preliminary implementation and

. . \ \ _ Data 4
PoC for extending Senseioty @ = ﬁ Ingestion T

Data and Resources
Access Control

N N D
O.@

Prototype
overview

RabbitMO

dFlink

RESTful : :
o e Feeeee : CloudAMQ
- J ' ' RabbitMQ Broker
Apache Flink Cluster E Maven
- Templates download
|K AmazonEKS 1 Dynamic job
' submission
""""""""""""""""""""""""""""""" ' Maven Repository
Dynamic bundle

< 'édh' ---.a.l!?(.:?tl?.n ______) 7) | " RESTful
! l "y (y (| JsonaPI

Stream processing

. Adapter p-service Proxy p-service
u-service bundie ¥ bundle bundie
4)
Apache Karaf
L <
OSGi Framework (Apache Felix / Eclipse Equinox)
4 Y

JVM

What about other loT platforms?

aWS AWS loT Greengrass) More expressive power
| AWS Lambda locally executed
on edge devices ° Bound to one stream

processing engine
Azure Stream Analytics on loT Edge
B8 Microsoft Azure Azure Stream Analytics jobs executed on ° No dynamic allocation and

edge devices relocation back and forth
between the edge-level

and cloud-level
Google Cloud loT with Apache Beam SDK Support of several
G Unified development model for defining engines
and executing data processing pipelines o ° No edge analytics

37

P -

Future works

Investigating possible solutions for simplifying the rules’ definition

Integrating in the architecture the monitoring p-service introduced by the
smart industry example

Improving the prototype implementation

Applying in the prototype the data access policies offered by Senseioty

