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The Allegory of the Wine-Maker

• A vineyard can be seen as a metaphor for a parallel execution space
• The wine-maker can take different paths on his way towards a final state
• On some paths, he may encounter the dreaded pheasants
• Manoeuvering through these paths reveals a complex search space

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 2 / 8

http://www.envisage-project.eu


Partial Order Reduction (POR) [Clarke et al 2000, Godefroid 96]

POR is a technique to systematically search for
reachable states while eliminating equivalent paths

Example 1

x7→1,y 7→2, { x := x+1 || y := 3 }

Example 2

x7→1, { x := x+1 || x := 3 }

Let [θ] be the set of traces equivalent to θ (ref. Mazurkiewicz trace theory).
We can reason about equivalence purely in terms of the scheduling traces
if the equivalence relation is strong enough to ensure the following theorem:

Theorem (Godefroid 96)

If s0
θ1−→ s1, s0

θ2−→ s2 and θ2 ∈ [θ1], then s1 = s2.

ev1 ev2 Scheduling traces:

θ1 = ev1 · ev2
θ2 = ev2 · ev1

ev3 ev4
θ3 = ev3 · ev4
θ4 = ev4 · ev3

Are the
executions
equivalent?
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From POR to Testing for Locally Deterministic Behavior

Testing theory for actors languages: Are actors locally deterministic?

Given a scheduling trace θ1 reflecting the execution of an actor,
can we construct another trace θ2 such that θ2 6∈ [θ1]?

We are interested in this problem for processes which are not always enabled;
for example, processes may be guarded by Boolean expressions.
For a single actor, this problem corresponds to guarded commands:

x7→1, { x < 2 ▷ x := x+1 || x := 3 }

Assume that we have executed the trace θ1 = ev1 · ev2.
Clearly θ2 = ev2 · ev1 6∈ [θ1].

However, θ2 is not a scheduling trace for this program
— it does not correspond to any execution!

ev1 ev2
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GCL and Symbolic Traces

Prog ::= σ, g
σ ∈ State ::= ϵ | σ[x 7→ v]

g ∈ GrdStm ::= skip | g; g
| e▷ s | s◁ e▷ s

s ∈ Stm ::= x := e | spawn(g)
e ∈ Exp ::= True | False | x | v

| op(e, . . . , e)

Need scheduling traces which
are sufficiently expressive to

determine both the equivalence
classes and guard enabledness

• We define a concolic operational semantics for GCL
• Let the scheduling trace capture
the symbolic linearization
of the program

• We can then compute the
path condition for a trace
by backwards reasoning

(Assign)
σ(e) = True σ′ = σ[x 7→ σ(e′)]

σ, {ι(e▷ x := e′; g)} ι(e▷x:=e′)−−−−−−→ σ′, {ι(g)}
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POR for GCL

Assume that we have observed a scheduling trace

θ1 = ev1 · ev2 · ev3 · ev4 · ev5 · ev6 · ev7 · ev8 · ev9 . . .

We can construct a new candidate test case by permuting events:

θ2 = ev1 · ev2 · ev3 · ev5 · ev4 · ev6 · ev7 · ev8 · ev9 . . .

Is θ2 an actual test case?

• Is θ2 6∈ [θ1]?
• Is θ2 executable?

path(ι1(g1 ▷ x := e) · ι1(g2 ▷ spawn(ι2)) · ι2(g3 ▷ s2) · ι1(g4 ▷ s3) · . . .)
= g1 ∧ path(ι1(g2 ▷ spawn(ι2)) · ι2(g3 ▷ s2) · ι1(g4 ▷ s3) · . . .)[x/e]
= g1 ∧ g2[x/e] ∧ path(ι2(g3 ▷ s2) · ι1(g4 ▷ s3) · . . .)[x/e] = . . .

Define an interference relation on scheduling events

Compute the weakest precondition over the path
condition of θ2 to find an initial state for the trace
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Conclusions

Contributions of the paper

• Formalize POR for GCL in terms of traces, concolic execution
and weakest precondition reasoning

• Fagiani Algorithm: algorithm which systematically generates test cases
for a GCL program based on an observed scheduling trace

• Prototype implementation: Maude and Python
• Language extensions: nested guards, procedures, local scopes, loops

Context of this work

• This paper contributes to our work on ExoDPOR, a parallel stateless model
checker for ABS, purely based on traces and record & replay supports

• POR algorithms are normally implemented in terms of runtime structure
rather than scheduling traces (e.g., DPOR). This means that execution
paths are explored sequentially
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Questions?
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