
Inseguendo Fagiani Salvatici
Partial Order Reduction for Guarded Command Languages

Frank de Boer1, Einar Broch Johnsen2,
Rudolf Schlatte2, S. Lizeth Tapia Tarifa2, Lars Tveito2

1 CWI, Amsterdam, the Netherlands
f.s.de.boer@cwi.nl

2 University of Oslo, Norway
{einarj, rudi, sltarifa, larstvei}@ifi.uio.no

DIP 2020, 27 November 2020

mailto:f.s.de.boer@cwi.nl
mailto:einarj@ifi.uio.no
http://www.sirius-labs.no

The Allegory of the Wine-Maker

• A vineyard can be seen as a metaphor for a parallel execution space
• The wine-maker can take different paths on his way towards a final state
• On some paths, he may encounter the dreaded pheasants
• Manoeuvering through these paths reveals a complex search space

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 2 / 8

http://www.envisage-project.eu

Partial Order Reduction (POR) [Clarke et al 2000, Godefroid 96]

POR is a technique to systematically search for
reachable states while eliminating equivalent paths

Example 1

x7→1,y 7→2, { x := x+1 || y := 3 }

Example 2

x7→1, { x := x+1 || x := 3 }

Let [θ] be the set of traces equivalent to θ (ref. Mazurkiewicz trace theory).
We can reason about equivalence purely in terms of the scheduling traces
if the equivalence relation is strong enough to ensure the following theorem:

Theorem (Godefroid 96)

If s0
θ1−→ s1, s0

θ2−→ s2 and θ2 ∈ [θ1], then s1 = s2.

ev1 ev2 Scheduling traces:

θ1 = ev1 · ev2
θ2 = ev2 · ev1

ev3 ev4
θ3 = ev3 · ev4
θ4 = ev4 · ev3

Are the
executions
equivalent?

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 3 / 8

http://www.envisage-project.eu

From POR to Testing for Locally Deterministic Behavior

Testing theory for actors languages: Are actors locally deterministic?

Given a scheduling trace θ1 reflecting the execution of an actor,
can we construct another trace θ2 such that θ2 6∈ [θ1]?

We are interested in this problem for processes which are not always enabled;
for example, processes may be guarded by Boolean expressions.
For a single actor, this problem corresponds to guarded commands:

x7→1, { x < 2 ▷ x := x+1 || x := 3 }

Assume that we have executed the trace θ1 = ev1 · ev2.
Clearly θ2 = ev2 · ev1 6∈ [θ1].

However, θ2 is not a scheduling trace for this program
— it does not correspond to any execution!

ev1 ev2

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 4 / 8

http://www.envisage-project.eu

GCL and Symbolic Traces

Prog ::= σ, g
σ ∈ State ::= ϵ | σ[x 7→ v]

g ∈ GrdStm ::= skip | g; g
| e▷ s | s◁ e▷ s

s ∈ Stm ::= x := e | spawn(g)
e ∈ Exp ::= True | False | x | v

| op(e, . . . , e)

Need scheduling traces which
are sufficiently expressive to

determine both the equivalence
classes and guard enabledness

• We define a concolic operational semantics for GCL
• Let the scheduling trace capture
the symbolic linearization
of the program

• We can then compute the
path condition for a trace
by backwards reasoning

(Assign)
σ(e) = True σ′ = σ[x 7→ σ(e′)]

σ, {ι(e▷ x := e′; g)} ι(e▷x:=e′)−−−−−−→ σ′, {ι(g)}

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 5 / 8

http://www.envisage-project.eu

POR for GCL

Assume that we have observed a scheduling trace

θ1 = ev1 · ev2 · ev3 · ev4 · ev5 · ev6 · ev7 · ev8 · ev9 . . .

We can construct a new candidate test case by permuting events:

θ2 = ev1 · ev2 · ev3 · ev5 · ev4 · ev6 · ev7 · ev8 · ev9 . . .

Is θ2 an actual test case?

• Is θ2 6∈ [θ1]?
• Is θ2 executable?

path(ι1(g1 ▷ x := e) · ι1(g2 ▷ spawn(ι2)) · ι2(g3 ▷ s2) · ι1(g4 ▷ s3) · . . .)
= g1 ∧ path(ι1(g2 ▷ spawn(ι2)) · ι2(g3 ▷ s2) · ι1(g4 ▷ s3) · . . .)[x/e]
= g1 ∧ g2[x/e] ∧ path(ι2(g3 ▷ s2) · ι1(g4 ▷ s3) · . . .)[x/e] = . . .

Define an interference relation on scheduling events

Compute the weakest precondition over the path
condition of θ2 to find an initial state for the trace

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 6 / 8

http://www.envisage-project.eu

Conclusions

Contributions of the paper

• Formalize POR for GCL in terms of traces, concolic execution
and weakest precondition reasoning

• Fagiani Algorithm: algorithm which systematically generates test cases
for a GCL program based on an observed scheduling trace

• Prototype implementation: Maude and Python
• Language extensions: nested guards, procedures, local scopes, loops

Context of this work

• This paper contributes to our work on ExoDPOR, a parallel stateless model
checker for ABS, purely based on traces and record & replay supports

• POR algorithms are normally implemented in terms of runtime structure
rather than scheduling traces (e.g., DPOR). This means that execution
paths are explored sequentially

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 7 / 8

http://www.envisage-project.eu

Questions?

E. B. Johnsen (U. Oslo) Inseguendo Fagiani Salvatici DIP, 27.11.2020 8 / 8

http://www.envisage-project.eu

